Author
Listed:
- Yunkyeong Jung
(Graduate School of Green Growth and Sustainability, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea)
- Daijiro Mizutani
(Department of Civil and Environmental Engineering, Tohoku University, Aoba, Sendai 980-8579, Miyagi, Japan)
- Jinwoo Lee
(Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea)
Abstract
Overloaded trucks directly contribute to road infrastructure deterioration and undermine safety, posing significant challenges to sustainability. This makes enforcement to reduce their numbers and impacts essential. Weigh-in-motion (WIM) systems use road-embedded sensors to measure truck weights and enforce regulations. However, WIM cannot be installed on all routes, and some overloaded truck drivers can detour to avoid them instead of giving up overloading if the detour penalty is still lower than the extra profit from overloading. This paper focuses on optimal WIM location planning for overloaded truck management, incorporating a demand shift and user equilibrium model based on the utility functions of overloaded and non-overloaded trucks. The presented framework includes an upper-level problem for WIM placement and a lower-level problem for demand shifts and traffic assignments among overloaded trucks, non-overloaded trucks, and light-duty vehicles for a given WIM placement. Particularly, at the upper level, the primary objective is to minimize the traffic loadings, i.e., the expected equivalent single-axle load–kilometers per unit time, with the secondary objective of minimizing the total traffic disruptions over the target network. Simulations and sensitivity analyses are conducted through a numerical example. Consequently, this study proposes an optimal WIM placement framework that considers drivers’ utility-based route choice and social costs such as ESAL and traffic congestion.
Suggested Citation
Yunkyeong Jung & Daijiro Mizutani & Jinwoo Lee, 2025.
"Weigh-In-Motion Placement for Overloaded Truck Enforcement Considering Traffic Loadings and Disruptions,"
Sustainability, MDPI, vol. 17(3), pages 1-14, January.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:3:p:826-:d:1572460
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:826-:d:1572460. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.