IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v47y2000i4p287-303.html
   My bibliography  Save this article

Heuristics for the location of inspection stations on a network

Author

Listed:
  • Michel Gendreau
  • Gilbert Laporte
  • Isabelle Parent

Abstract

This article considers the preventive flow interception problem (FIP) on a network. Given a directed network with known origin‐destination path flows, each generating a certain amount of risk, the preventive FIP consists of optimally locating m facilities on the network in order to maximize the total risk reduction. A greedy search heuristic as well as several variants of an ascent search heuristic and of a tabu search heuristic are presented for the FIP. Computational results indicate that the best versions of the latter heuristics consistently produce optimal or near optimal solutions on test problems. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 287–303, 2000

Suggested Citation

  • Michel Gendreau & Gilbert Laporte & Isabelle Parent, 2000. "Heuristics for the location of inspection stations on a network," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(4), pages 287-303, June.
  • Handle: RePEc:wly:navres:v:47:y:2000:i:4:p:287-303
    DOI: 10.1002/(SICI)1520-6750(200006)47:43.0.CO;2-R
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1520-6750(200006)47:43.0.CO;2-R
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1520-6750(200006)47:43.0.CO;2-R?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John Hodgson, M., 1981. "The location of public facilities intermediate to the journey to work," European Journal of Operational Research, Elsevier, vol. 6(2), pages 199-204, February.
    2. Oded Berman & Richard C. Larson & Nikoletta Fouska, 1992. "Optimal Location of Discretionary Service Facilities," Transportation Science, INFORMS, vol. 26(3), pages 201-211, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Le Thi Khanh Hien & Melvyn Sim & Huan Xu, 2020. "Mitigating Interdiction Risk with Fortification," Operations Research, INFORMS, vol. 68(2), pages 348-362, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miyagawa, Masashi, 2010. "Distributions of rectilinear deviation distance to visit a facility," European Journal of Operational Research, Elsevier, vol. 205(1), pages 106-112, August.
    2. Bayraktar, O. Baturhan & Günneç, Dilek & Salman, F. Sibel & Yücel, Eda, 2022. "Relief Aid Provision to En Route Refugees: Multi-Period Mobile Facility Location with Mobile Demand," European Journal of Operational Research, Elsevier, vol. 301(2), pages 708-725.
    3. Tong, Daoqin & Ren, Fang & Mack, James, 2012. "Locating farmers’ markets with an incorporation of spatio-temporal variation," Socio-Economic Planning Sciences, Elsevier, vol. 46(2), pages 149-156.
    4. Berman, Obed, 1995. "The maximizing market size discretionary facility location problem with congestion," Socio-Economic Planning Sciences, Elsevier, vol. 29(1), pages 39-46, March.
    5. Gzara, Fatma & Erkut, Erhan, 2009. "A Lagrangian relaxation approach to large-scale flow interception problems," European Journal of Operational Research, Elsevier, vol. 198(2), pages 405-411, October.
    6. John Hodgson, M. & Rosing, K. E. & Leontien, A. & Storrier, G., 1996. "Applying the flow-capturing location-allocation model to an authentic network: Edmonton, Canada," European Journal of Operational Research, Elsevier, vol. 90(3), pages 427-443, May.
    7. Bogyrbayeva, Aigerim & Kwon, Changhyun, 2021. "Pessimistic evasive flow capturing problems," European Journal of Operational Research, Elsevier, vol. 293(1), pages 133-148.
    8. Kuby, Michael & Lim, Seow, 2005. "The flow-refueling location problem for alternative-fuel vehicles," Socio-Economic Planning Sciences, Elsevier, vol. 39(2), pages 125-145, June.
    9. Averbakh, Igor & Berman, Oded, 1996. "Locating flow-capturing units on a network with multi-counting and diminishing returns to scale," European Journal of Operational Research, Elsevier, vol. 91(3), pages 495-506, June.
    10. Tommy Carpenter & Andrew Curtis & S. Keshav, 2014. "The return on investment for taxi companies transitioning to electric vehicles," Transportation, Springer, vol. 41(4), pages 785-818, July.
    11. S. A. MirHassani & R. Ebrazi, 2013. "A Flexible Reformulation of the Refueling Station Location Problem," Transportation Science, INFORMS, vol. 47(4), pages 617-628, November.
    12. David Schindl & Nicolas Zufferey, 2015. "A learning tabu search for a truck allocation problem with linear and nonlinear cost components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(1), pages 32-45, February.
    13. Lin, Zhenhong & Ogden, Joan & Fan, Yueyue & Chen, Chien-Wei, 2009. "The Fuel-Travel-Back Approach to Hydrogen Station Siting," Institute of Transportation Studies, Working Paper Series qt14p44238, Institute of Transportation Studies, UC Davis.
    14. Monir Sabbaghtorkan & Rajan Batta & Qing He, 2022. "On the analysis of an idealized model to manage gasoline supplies in a short-notice hurricane evacuation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 911-945, September.
    15. Sterle, Claudio & Sforza, Antonio & Esposito Amideo, Annunziata, 2016. "Multi-period location of flow intercepting portable facilities of an intelligent transportation system," Socio-Economic Planning Sciences, Elsevier, vol. 53(C), pages 4-13.
    16. Hwang, Seong Wook & Kweon, Sang Jin & Ventura, Jose A., 2015. "Infrastructure development for alternative fuel vehicles on a highway road system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 170-183.
    17. Taymaz, S. & Iyigun, C. & Bayindir, Z.P. & Dellaert, N.P., 2020. "A healthcare facility location problem for a multi-disease, multi-service environment under risk aversion," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    18. Erdoğan, Sevgi & Çapar, İsmail & Çapar, İbrahim & Nejad, Mohammad Motalleb, 2022. "Establishing a statewide electric vehicle charging station network in Maryland: A corridor-based station location problem," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    19. Li, Ran & Tong, Daoqin, 2017. "Incorporating activity space and trip chaining into facility siting for accessibility maximization," Socio-Economic Planning Sciences, Elsevier, vol. 60(C), pages 1-14.
    20. Miao, Hongzhi & Jia, Hongfei & Li, Jiangchen & Qiu, Tony Z., 2019. "Autonomous connected electric vehicle (ACEV)-based car-sharing system modeling and optimal planning: A unified two-stage multi-objective optimization methodology," Energy, Elsevier, vol. 169(C), pages 797-818.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:47:y:2000:i:4:p:287-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.