IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v8y2019i4p166-d278610.html
   My bibliography  Save this article

Particle Size Distribution in Municipal Solid Waste Pre-Treated for Bioprocessing

Author

Listed:
  • Yue Zhang

    (Water and Environmental Engineering Group, University of Southampton, Southampton SO16 7QF, UK)

  • Sigrid Kusch-Brandt

    (Water and Environmental Engineering Group, University of Southampton, Southampton SO16 7QF, UK)

  • Shiyan Gu

    (Water and Environmental Engineering Group, University of Southampton, Southampton SO16 7QF, UK
    Liaoning Key Laboratory of Agricultural Biology Environment and Energy Engineering, Shenyang Agricultural University, Shenyang 110866, China)

  • Sonia Heaven

    (Water and Environmental Engineering Group, University of Southampton, Southampton SO16 7QF, UK)

Abstract

While it is well known that particle size reduction impacts the performance of bioprocessing such as anaerobic digestion or composting, there is a relative lack of knowledge about particle size distribution (PSD) in pre-treated organic material, i.e., the distribution of particles across different size ranges. PSD in municipal solid waste (MSW) pre-treated for bioprocessing in mechanical–biological treatment (MBT) was researched. In the first part of this study, the PSD in pre-treated waste at two full-scale MBT plants in the UK was determined. The main part of the study consisted of experimental trials to reduce particle sizes in MSW destined for bioprocessing and to explore the obtained PSD patterns. Shredders and a macerating grinder were used. For shear shredders, a jaw opening of 20 mm was found favourable for effective reduction of particle sizes, while a smaller jaw opening rather compressed the wet organic waste into balls. Setting the shredder jaw opening to 20 mm does not mean that in the output all particles will be 20 mm or below. PSD profiles revealed that different particle sizes were present in each trial. Using different types of equipment in series was effective in reducing the presence of larger particles. Maceration yielded a PSD dominated by very fine particles, which is unsuitable for composting and potentially also for anaerobic digestion. It was concluded that shredding, where equipment is well selected, is effective in delivering a material well suited for anaerobic digestion or composting.

Suggested Citation

  • Yue Zhang & Sigrid Kusch-Brandt & Shiyan Gu & Sonia Heaven, 2019. "Particle Size Distribution in Municipal Solid Waste Pre-Treated for Bioprocessing," Resources, MDPI, vol. 8(4), pages 1-24, October.
  • Handle: RePEc:gam:jresou:v:8:y:2019:i:4:p:166-:d:278610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/8/4/166/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/8/4/166/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Y. & Heaven, S. & Venetsaneas, N. & Banks, C.J. & Bridgwater, A.V., 2018. "Slow pyrolysis of organic fraction of municipal solid waste (OFMSW): Characterisation of products and screening of the aqueous liquid product for anaerobic digestion," Applied Energy, Elsevier, vol. 213(C), pages 158-168.
    2. Georgiana Moiceanu & Gigel Paraschiv & Gheorghe Voicu & Mirela Dinca & Olivia Negoita & Mihai Chitoiu & Paula Tudor, 2019. "Energy Consumption at Size Reduction of Lignocellulose Biomass for Bioenergy," Sustainability, MDPI, vol. 11(9), pages 1-12, April.
    3. Panigrahi, Sagarika & Dubey, Brajesh K., 2019. "A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste," Renewable Energy, Elsevier, vol. 143(C), pages 779-797.
    4. Richard Bull & Judith Petts & James Evans, 2008. "Social learning from public engagement: dreaming the impossible?," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 51(5), pages 701-716.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrzej Marczuk & Agata Blicharz-Kania & Petr A. Savinykh & Alexey Y. Isupov & Andrey V. Palichyn & Ilya I. Ivanov, 2019. "Studies of a Rotary–Centrifugal Grain Grinder Using a Multifactorial Experimental Design Method," Sustainability, MDPI, vol. 11(19), pages 1-11, September.
    2. Jean de Dieu Marcel Ufitikirezi & Martin Filip & Mohammad Ghorbani & Tomáš Zoubek & Pavel Olšan & Roman Bumbálek & Miroslav Strob & Petr Bartoš & Sandra Nicole Umurungi & Yves Theoneste Murindangabo &, 2024. "Agricultural Waste Valorization: Exploring Environmentally Friendly Approaches to Bioenergy Conversion," Sustainability, MDPI, vol. 16(9), pages 1-24, April.
    3. Ferraz de Campos, Victor Arruda & Silva, Valter Bruno & Cardoso, João Sousa & Brito, Paulo S. & Tuna, Celso Eduardo & Silveira, José Luz, 2021. "A review of waste management in Brazil and Portugal: Waste-to-energy as pathway for sustainable development," Renewable Energy, Elsevier, vol. 178(C), pages 802-820.
    4. Einsiedel, Edna F. & Boyd, Amanda D. & Medlock, Jennifer & Ashworth, Peta, 2013. "Assessing socio-technical mindsets: Public deliberations on carbon capture and storage in the context of energy sources and climate change," Energy Policy, Elsevier, vol. 53(C), pages 149-158.
    5. Tonanzi, B. & Gallipoli, A. & Gianico, A. & Montecchio, D. & Pagliaccia, P. & Rossetti, S. & Braguglia, C.M., 2021. "Elucidating the key factors in semicontinuous anaerobic digestion of urban biowaste: The crucial role of sludge addition in process stability, microbial community enrichment and methane production," Renewable Energy, Elsevier, vol. 179(C), pages 272-284.
    6. Hajizadeh, Abdollah & Mohamadi-Baghmolaei, Mohamad & Cata Saady, Noori M. & Zendehboudi, Sohrab, 2022. "Hydrogen production from biomass through integration of anaerobic digestion and biogas dry reforming," Applied Energy, Elsevier, vol. 309(C).
    7. Tasos Hovardas, 2021. "Social Sustainability as Social Learning: Insights from Multi-Stakeholder Environmental Governance," Sustainability, MDPI, vol. 13(14), pages 1-20, July.
    8. Ebrahimian, Farinaz & Karimi, Keikhosro & Angelidaki, Irini, 2022. "Coproduction of hydrogen, butanol, butanediol, ethanol, and biogas from the organic fraction of municipal solid waste using bacterial cocultivation followed by anaerobic digestion," Renewable Energy, Elsevier, vol. 194(C), pages 552-560.
    9. Audley Genus, 2014. "Coinquiry for Environmental Sustainability: A Review of the UK Beacons for Public Engagement," Environment and Planning C, , vol. 32(3), pages 491-508, June.
    10. Asya İşçen & Kerem Öznacar & K. M. Murat Tunç & M. Erdem Günay, 2023. "Exploring the Critical Factors of Biomass Pyrolysis for Sustainable Fuel Production by Machine Learning," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
    11. Xuemeng Zhang & Chao Liu & Yuexi Chen & Guanghong Zheng & Yinguang Chen, 2022. "Source separation, transportation, pretreatment, and valorization of municipal solid waste: a critical review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11471-11513, October.
    12. Héctor Alfredo López-Aguilar & Bryan Morales-Durán & David Quiroz-Cardoza & Antonino Pérez-Hernández, 2023. "Lag Phase in the Anaerobic Co-Digestion of Sargassum spp. and Organic Domestic Waste," Energies, MDPI, vol. 16(14), pages 1-15, July.
    13. Musa Manga & Christian Aragón-Briceño & Panagiotis Boutikos & Swaib Semiyaga & Omotunde Olabinjo & Chimdi C. Muoghalu, 2023. "Biochar and Its Potential Application for the Improvement of the Anaerobic Digestion Process: A Critical Review," Energies, MDPI, vol. 16(10), pages 1-23, May.
    14. Alessandro Neri & Bruno Bernardi & Giuseppe Zimbalatti & Souraya Benalia, 2023. "An Overview of Anaerobic Digestion of Agricultural By-Products and Food Waste for Biomethane Production," Energies, MDPI, vol. 16(19), pages 1-20, September.
    15. Marta Wiśniewska & Andrzej Kulig & Krystyna Lelicińska-Serafin, 2021. "Odour Nuisance at Municipal Waste Biogas Plants and the Effect of Feedstock Modification on the Circular Economy—A Review," Energies, MDPI, vol. 14(20), pages 1-22, October.
    16. Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy & Brem, Gerrit & Wang, Shule & Wen, Yuming & Yang, Weihong & Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Urbanowska, Agnieszka & Mościcki,, 2022. "Integration of hydrothermal carbonization treatment for water and energy recovery from organic fraction of municipal solid waste digestate," Renewable Energy, Elsevier, vol. 184(C), pages 577-591.
    17. Hasan, M.M. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Jahirul, M.I., 2021. "Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Elena Tamburini & Mattias Gaglio & Giuseppe Castaldelli & Elisa Anna Fano, 2020. "Biogas from Agri-Food and Agricultural Waste Can Appreciate Agro-Ecosystem Services: The Case Study of Emilia Romagna Region," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    19. Yu, Xiunan & Zhang, Congguang & Qiu, Ling & Yao, Yiqing & Sun, Guotao & Guo, Xiaohui, 2020. "Anaerobic digestion of swine manure using aqueous pyrolysis liquid as an additive," Renewable Energy, Elsevier, vol. 147(P1), pages 2484-2493.
    20. Joanna Kazimierowicz & Marcin Dębowski, 2022. "Aerobic Granular Sludge as a Substrate in Anaerobic Digestion—Current Status and Perspectives," Sustainability, MDPI, vol. 14(17), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:8:y:2019:i:4:p:166-:d:278610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.