Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2013.11.040
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Meier, Dietrich & van de Beld, Bert & Bridgwater, Anthony V. & Elliott, Douglas C. & Oasmaa, Anja & Preto, Fernando, 2013. "State-of-the-art of fast pyrolysis in IEA bioenergy member countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 619-641.
- Stamatov, V. & Honnery, D. & Soria, J., 2006. "Combustion properties of slow pyrolysis bio-oil produced from indigenous Australian species," Renewable Energy, Elsevier, vol. 31(13), pages 2108-2121.
- Van de Beld, Bert & Holle, Elmar & Florijn, Jan, 2013. "The use of pyrolysis oil and pyrolysis oil derived fuels in diesel engines for CHP applications," Applied Energy, Elsevier, vol. 102(C), pages 190-197.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Heena Panchasara & Nanjappa Ashwath, 2021. "Effects of Pyrolysis Bio-Oils on Fuel Atomisation—A Review," Energies, MDPI, vol. 14(4), pages 1-22, February.
- Alberto Veses & Juan Daniel Martínez & María Soledad Callén & Ramón Murillo & Tomás García, 2020. "Application of Upgraded Drop-In Fuel Obtained from Biomass Pyrolysis in a Spark Ignition Engine," Energies, MDPI, vol. 13(8), pages 1-15, April.
- Daya Shankar Pandey & Giannis Katsaros & Christian Lindfors & James J. Leahy & Savvas A. Tassou, 2019. "Fast Pyrolysis of Poultry Litter in a Bubbling Fluidised Bed Reactor: Energy and Nutrient Recovery," Sustainability, MDPI, vol. 11(9), pages 1-17, May.
- Seljak, T. & Buffi, M. & Valera-Medina, A. & Chong, C.T. & Chiaramonti, D. & Katrašnik, T., 2020. "Bioliquids and their use in power generation – A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
- Broumand, Mohsen & Khan, Muhammad Shahzeb & Yun, Sean & Hong, Zekai & Thomson, Murray J., 2021. "Feasibility of running a micro gas turbine on wood-derived fast pyrolysis bio-oils: Effect of the fuel spray formation and preparation," Renewable Energy, Elsevier, vol. 178(C), pages 775-784.
- Roy, Poritosh & Dias, Goretty, 2017. "Prospects for pyrolysis technologies in the bioenergy sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 59-69.
- No, Soo-Young, 2014. "Application of bio-oils from lignocellulosic biomass to transportation, heat and power generation—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1108-1125.
- Lee, Seokhwan & Woo, Sang Hee & Kim, Yongrae & Choi, Young & Kang, Kernyong, 2020. "Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel," Energy, Elsevier, vol. 206(C).
- Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
- Jean de Dieu Marcel Ufitikirezi & Martin Filip & Mohammad Ghorbani & Tomáš Zoubek & Pavel Olšan & Roman Bumbálek & Miroslav Strob & Petr Bartoš & Sandra Nicole Umurungi & Yves Theoneste Murindangabo &, 2024. "Agricultural Waste Valorization: Exploring Environmentally Friendly Approaches to Bioenergy Conversion," Sustainability, MDPI, vol. 16(9), pages 1-24, April.
- Peters, Jens F. & Petrakopoulou, Fontina & Dufour, Javier, 2015. "Exergy analysis of synthetic biofuel production via fast pyrolysis and hydroupgrading," Energy, Elsevier, vol. 79(C), pages 325-336.
- Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
- Li, Chunshan & Suzuki, Kenzi, 2010. "Resources, properties and utilization of tar," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 905-915.
- Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
- Yuan, Xingzhong & Ding, Xiaowei & Leng, Lijian & Li, Hui & Shao, Jianguang & Qian, Yingying & Huang, Huajun & Chen, Xiaohong & Zeng, Guangming, 2018. "Applications of bio-oil-based emulsions in a DI diesel engine: The effects of bio-oil compositions on engine performance and emissions," Energy, Elsevier, vol. 154(C), pages 110-118.
- Choi, Sang Kyu & Choi, Yeon Seok & Han, So Young & Kim, Seock Joon & Rahman, Tawsif & Jeong, Yeon Woo & Van Nguyen, Quynh & Cha, Young Rok, 2019. "Bio-crude oil production from a new genotype of Miscanthus sacchariflorus Geodae-Uksae 1," Renewable Energy, Elsevier, vol. 144(C), pages 153-158.
- Yang, Zixu & Kumar, Ajay & Huhnke, Raymond L., 2015. "Review of recent developments to improve storage and transportation stability of bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 859-870.
- Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
- Strzalka, Rafal & Schneider, Dietrich & Eicker, Ursula, 2017. "Current status of bioenergy technologies in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 801-820.
- Hossain, Md. Sanowar & Paul, Sanjay & Das, Barun K. & Das, Pronob & Nuhash, Sadman Soumik, 2025. "Techno-econo-environmental feasibility analysis and investigation of engine performance, combustion, and emission characteristics using co-pyrolytic oil derived from tea waste and potato skin," Applied Energy, Elsevier, vol. 377(PA).
More about this item
Keywords
Fast pyrolysis; Pyrolysis oil; Combustion; Emissions; Burner applications; Lignocellulosic biomass;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:116:y:2014:i:c:p:178-190. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.