IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i3p1230-d1331157.html
   My bibliography  Save this article

Modeling the Effects of Climate Change on the Current and Future Potential Distribution of Berberis vulgaris L. with Machine Learning

Author

Listed:
  • Ayse Gul Sarikaya

    (Faculty of Forestry, Bursa Technical University, Bursa 16310, Türkiye)

  • Almira Uzun

    (Graduate School, Bursa Technical University, Bursa 16310, Türkiye)

Abstract

Species of the Berberis genus, which are widely distributed naturally throughout the world, are cultivated and used for various purposes such as food, medicinal applications, and manufacturing dyes. Model-based machine learning is a language for specifying models, allowing the definition of a model using concise code, and enabling the automatic creation of software that implements the specified model. Maximum entropy (MaxEnt 3.4.1) is an algorithm used to model the appropriate distribution of species across geographical regions and is based on the species distribution model that is frequently also used in modeling the current and future potential distribution areas of plant species. Therefore, this study was conducted to estimate the current and future potential distribution areas of Berberis vulgaris in Türkiye for the periods 2041–2060 and 2081–2100, according to the SSP2 4.5 and SSP5 8.5 scenarios based on the IPSL-CM6A-LR climate change model. For this purpose, the coordinates obtained in the WGS 84 coordinate system were marked using the 5 m high spatial resolution Google Satellite Hybrid base maps, which are readily available in the 3.10.4 QGIS program, the current version of QGIS (Quantum GIS). The CM6A-LR climate model, the latest version of the IPSL climate models, was used to predict the species’ future distribution area. The area showed a high correlation with the points representing B. vulgaris , which is generally distributed in the Mediterranean and the central and eastern Black Sea regions of Türkiye, and the very suitable areas encompassed 45,413.82 km 2 . However, when the SSP2 4.5 scenario was considered for the period 2041–2060, the areas very suitable for Berberis vulgaris comprised 59,120.05 km 2 , and in the SSP2 4.5 scenario, very suitable areas were found to encompass 56,730.46 km 2 in the 2081–2100 period. Considering the SSP5 8.5 scenario for the period 2041–2060, the area most suitable for the B. vulgaris species is 66,670.39 km 2 . In the SSP5 8.5 scenario, very suitable areas were found to cover 20,108.29 km 2 in the 2081–2100 period. Careful consideration of both the potential positive and negative impacts of climate change is essential, and these should be regarded as opportunities to implement appropriate adaptation strategies. The necessary conditions for the continued existence and sustainability of B. vulgaris —that is, areas with ecological niche potential—have been determined.

Suggested Citation

  • Ayse Gul Sarikaya & Almira Uzun, 2024. "Modeling the Effects of Climate Change on the Current and Future Potential Distribution of Berberis vulgaris L. with Machine Learning," Sustainability, MDPI, vol. 16(3), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1230-:d:1331157
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/3/1230/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/3/1230/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shcheglovitova, Mariya & Anderson, Robert P., 2013. "Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes," Ecological Modelling, Elsevier, vol. 269(C), pages 9-17.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amaro, George & Fidelis, Elisangela Gomes & da Silva, Ricardo Siqueira & Marchioro, Cesar Augusto, 2023. "Effect of study area extent on the potential distribution of Species: A case study with models for Raoiella indica Hirst (Acari: Tenuipalpidae)," Ecological Modelling, Elsevier, vol. 483(C).
    2. Valentina Lucia Astrid Laface & Carmelo Maria Musarella & Gianmarco Tavilla & Agostino Sorgonà & Ana Cano-Ortiz & Ricardo Quinto Canas & Giovanni Spampinato, 2023. "Current and Potential Future Distribution of Endemic Salvia ceratophylloides Ard. (Lamiaceae)," Land, MDPI, vol. 12(1), pages 1-21, January.
    3. H. Oğuz Çoban & Ömer K. Örücü & E. Seda Arslan, 2020. "MaxEnt Modeling for Predicting the Current and Future Potential Geographical Distribution of Quercus libani Olivier," Sustainability, MDPI, vol. 12(7), pages 1-17, March.
    4. Bruce G. Marcot & Anca M. Hanea, 2021. "What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis?," Computational Statistics, Springer, vol. 36(3), pages 2009-2031, September.
    5. Holder, Anna M. & Markarian, Arev & Doyle, Jessie M. & Olson, John R., 2020. "Predicting geographic distributions of fishes in remote stream networks using maximum entropy modeling and landscape characterizations," Ecological Modelling, Elsevier, vol. 433(C).
    6. Zeng, Yiwen & Low, Bi Wei & Yeo, Darren C.J., 2016. "Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish," Ecological Modelling, Elsevier, vol. 341(C), pages 5-13.
    7. Boyang Liu & Xiang Gao & Jun Ma & Zhihui Jiao & Jianhua Xiao & Hongbin Wang, 2018. "Influence of Host and Environmental Factors on the Distribution of the Japanese Encephalitis Vector Culex tritaeniorhynchus in China," IJERPH, MDPI, vol. 15(9), pages 1-15, August.
    8. Moreno-Amat, Elena & Mateo, Rubén G. & Nieto-Lugilde, Diego & Morueta-Holme, Naia & Svenning, Jens-Christian & García-Amorena, Ignacio, 2015. "Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data," Ecological Modelling, Elsevier, vol. 312(C), pages 308-317.
    9. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    10. Aldo Rafael Martínez-Sifuentes & José Antonio Hernández-Herrera & Luis Manuel Valenzuela-Núñez & Edwin Amir Briceño-Contreras & Ulises Manzanilla-Quiñones & Argel Gastélum-Arellánez & Ramón Trucíos-Ca, 2022. "Climate Change Impact on the Habitat Suitability of Pseudotsuga menziesii Mirb. Franco in Mexico: An Approach for Its Conservation," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    11. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    12. Aldo Rafael Martínez-Sifuentes & Juan Estrada-Ávalos & Ramón Trucíos-Caciano & José Villanueva-Díaz & Nuria Aidé López-Hernández & Juan de Dios López-Favela, 2023. "Predicting Climate Change Impacts on Candelilla ( Euphorbia antisyphilitica Zucc.) for Mexico: An Approach for Mexico’s Primary Harvest Area," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
    13. Wan, Nian-Feng & Jiang, Jie-Xian & Li, Bo, 2014. "Modeling ecological two-sidedness for complex ecosystems," Ecological Modelling, Elsevier, vol. 287(C), pages 36-43.
    14. Sutton, G.F. & Martin, G.D., 2022. "Testing MaxEnt model performance in a novel geographic region using an intentionally introduced insect," Ecological Modelling, Elsevier, vol. 473(C).
    15. Worthington, Thomas A. & Zhang, Tianjiao & Logue, Daniel R. & Mittelstet, Aaron R. & Brewer, Shannon K., 2016. "Landscape and flow metrics affecting the distribution of a federally-threatened fish: Improving management, model fit, and model transferability," Ecological Modelling, Elsevier, vol. 342(C), pages 1-18.
    16. Boria, Robert A. & Olson, Link E. & Goodman, Steven M. & Anderson, Robert P., 2014. "Spatial filtering to reduce sampling bias can improve the performance of ecological niche models," Ecological Modelling, Elsevier, vol. 275(C), pages 73-77.
    17. An Cao & Xueyi Shi, 2022. "The Effects of Climate Change on Habitat Connectivity: A Case Study of the Brown-Eared Pheasant in China," Land, MDPI, vol. 11(6), pages 1-17, May.
    18. Marianna V. P. Simões & Hanieh Saeedi & Marlon E. Cobos & Angelika Brandt, 2021. "Environmental matching reveals non-uniform range-shift patterns in benthic marine Crustacea," Climatic Change, Springer, vol. 168(3), pages 1-20, October.
    19. Cesar A Marchioro, 2016. "Global Potential Distribution of Bactrocera carambolae and the Risks for Fruit Production in Brazil," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-16, November.
    20. Ortner, Olivia & Wallentin, Gudrun, 2020. "Integration of landscape metric surfaces derived from vector data improves species distribution models," Ecological Modelling, Elsevier, vol. 431(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1230-:d:1331157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.