IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8888-d867331.html
   My bibliography  Save this article

Climate Change Impact on the Habitat Suitability of Pseudotsuga menziesii Mirb. Franco in Mexico: An Approach for Its Conservation

Author

Listed:
  • Aldo Rafael Martínez-Sifuentes

    (Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, CENID-RASPA, Gómez Palacio 35150, Mexico)

  • José Antonio Hernández-Herrera

    (Departamento de Recursos Naturales, Universidad Autónoma Agraria Antonio Narro, Unidad Saltillo, Saltillo 25315, Mexico)

  • Luis Manuel Valenzuela-Núñez

    (Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Gómez Palacio 35050, Mexico)

  • Edwin Amir Briceño-Contreras

    (Departamento de Procesos Agroalimentarios, Universidad Para el Bienestar Benito Juárez García, Sede Francisco y Madero 27900, Mexico)

  • Ulises Manzanilla-Quiñones

    (Facultad de Agrobiología, Universidad Michoacana de San Nicolás de Hidalgo, Uruapan 60170, Mexico)

  • Argel Gastélum-Arellánez

    (CONACYT-Centro de Innovación Aplicada en Tecnologías Competitivas, León 37545, Mexico)

  • Ramón Trucíos-Caciano

    (Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, CENID-RASPA, Gómez Palacio 35150, Mexico)

  • Magali Jeaneth López Calderón

    (Facultad de Agricultura y Zootecnia, Universidad Juárez del Estado de Durango, Gómez Palacio 35050, Mexico)

Abstract

One of the conifers that survived after the last glaciation is the Pseudotsuga menziesii (Mirb.) Franco. Due to the gradual increase in temperature, this species was forced to move from the south to the north and to higher elevation, causing a fragmented and intermittent distribution in Mexico. The main objective of this study was to model and identify suitable areas for the future conservation of the P. menziesii in Mexico. The specific objectives of this research were: (i) to model the habitat suitability of P. menziesii in Mexico, (ii) to identify the most relevant environmental variables based on its current and future habitat suitability (2030, 2050, 2070 and 2090) and (iii) to suggest areas for the conservation of the species in Mexico. Records were compiled from different national and international sources. Climate and topographic variables were used. With MaxEnt software version 3.4.3 (Phillips, New York, NY, USA) 100 distribution models were obtained, where the model showed an area under the curve of 0.905 for training and 0.906 for validation and partial ROC of 1.95 and Z reliable ( p < 0.01), with TSS values > 0.80. The current area of the P. menziesii was 31,580.65 km 2 . The most important variables in the current and future distribution were maximum temperature of the hottest month, precipitation of the coldest trimester and average temperature of the coldest trimester. The percentage of permanence (resilience) for the 2030, 2050, 2070 and 2090 climate horizons was 49.79%, 25.14%, 17.45% and 16.46%, respectively, for the SSP 245 scenario. On the other hand, for the SSP 585 scenario and the analyzed horizons, the percentage resilience in areas of suitable habitat zones was 41.45%, 27.42%, 9.82% and 2.89%.

Suggested Citation

  • Aldo Rafael Martínez-Sifuentes & José Antonio Hernández-Herrera & Luis Manuel Valenzuela-Núñez & Edwin Amir Briceño-Contreras & Ulises Manzanilla-Quiñones & Argel Gastélum-Arellánez & Ramón Trucíos-Ca, 2022. "Climate Change Impact on the Habitat Suitability of Pseudotsuga menziesii Mirb. Franco in Mexico: An Approach for Its Conservation," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8888-:d:867331
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8888/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8888/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shcheglovitova, Mariya & Anderson, Robert P., 2013. "Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes," Ecological Modelling, Elsevier, vol. 269(C), pages 9-17.
    2. Wilfried Thuiller & Sébastien Lavergne & Cristina Roquet & Isabelle Boulangeat & Bruno Lafourcade & Miguel. B. Araujo, 2011. "Consequences of climate change on the tree of life in Europe," Nature, Nature, vol. 470(7335), pages 531-534, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nina Tiel & Fabian Fopp & Philipp Brun & Johan Hoogen & Dirk Nikolaus Karger & Cecilia M. Casadei & Lisha Lyu & Devis Tuia & Niklaus E. Zimmermann & Thomas W. Crowther & Loïc Pellissier, 2024. "Regional uniqueness of tree species composition and response to forest loss and climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Amaro, George & Fidelis, Elisangela Gomes & da Silva, Ricardo Siqueira & Marchioro, Cesar Augusto, 2023. "Effect of study area extent on the potential distribution of Species: A case study with models for Raoiella indica Hirst (Acari: Tenuipalpidae)," Ecological Modelling, Elsevier, vol. 483(C).
    3. Valentina Lucia Astrid Laface & Carmelo Maria Musarella & Gianmarco Tavilla & Agostino Sorgonà & Ana Cano-Ortiz & Ricardo Quinto Canas & Giovanni Spampinato, 2023. "Current and Potential Future Distribution of Endemic Salvia ceratophylloides Ard. (Lamiaceae)," Land, MDPI, vol. 12(1), pages 1-21, January.
    4. H. Oğuz Çoban & Ömer K. Örücü & E. Seda Arslan, 2020. "MaxEnt Modeling for Predicting the Current and Future Potential Geographical Distribution of Quercus libani Olivier," Sustainability, MDPI, vol. 12(7), pages 1-17, March.
    5. Bruce G. Marcot & Anca M. Hanea, 2021. "What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis?," Computational Statistics, Springer, vol. 36(3), pages 2009-2031, September.
    6. Holder, Anna M. & Markarian, Arev & Doyle, Jessie M. & Olson, John R., 2020. "Predicting geographic distributions of fishes in remote stream networks using maximum entropy modeling and landscape characterizations," Ecological Modelling, Elsevier, vol. 433(C).
    7. Zeng, Yiwen & Low, Bi Wei & Yeo, Darren C.J., 2016. "Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish," Ecological Modelling, Elsevier, vol. 341(C), pages 5-13.
    8. Boyang Liu & Xiang Gao & Jun Ma & Zhihui Jiao & Jianhua Xiao & Hongbin Wang, 2018. "Influence of Host and Environmental Factors on the Distribution of the Japanese Encephalitis Vector Culex tritaeniorhynchus in China," IJERPH, MDPI, vol. 15(9), pages 1-15, August.
    9. Duque-Lazo, J. & van Gils, H. & Groen, T.A. & Navarro-Cerrillo, R.M., 2016. "Transferability of species distribution models: The case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia," Ecological Modelling, Elsevier, vol. 320(C), pages 62-70.
    10. Moreno-Amat, Elena & Mateo, Rubén G. & Nieto-Lugilde, Diego & Morueta-Holme, Naia & Svenning, Jens-Christian & García-Amorena, Ignacio, 2015. "Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data," Ecological Modelling, Elsevier, vol. 312(C), pages 308-317.
    11. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    12. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    13. Aldo Rafael Martínez-Sifuentes & Juan Estrada-Ávalos & Ramón Trucíos-Caciano & José Villanueva-Díaz & Nuria Aidé López-Hernández & Juan de Dios López-Favela, 2023. "Predicting Climate Change Impacts on Candelilla ( Euphorbia antisyphilitica Zucc.) for Mexico: An Approach for Mexico’s Primary Harvest Area," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
    14. Chiu, Mei-Shiu, 2013. "Tensions in implementing the “energy-conservation/carbon-reduction” policy in Taiwanese culture," Energy Policy, Elsevier, vol. 55(C), pages 415-425.
    15. Wan, Nian-Feng & Jiang, Jie-Xian & Li, Bo, 2014. "Modeling ecological two-sidedness for complex ecosystems," Ecological Modelling, Elsevier, vol. 287(C), pages 36-43.
    16. Pliscoff, Patricio & Luebert, Federico & Hilger, Hartmut H. & Guisan, Antoine, 2014. "Effects of alternative sets of climatic predictors on species distribution models and associated estimates of extinction risk: A test with plants in an arid environment," Ecological Modelling, Elsevier, vol. 288(C), pages 166-177.
    17. Fernández-González, Raquel & Puime-Guillén, Félix & Panait, Mirela, 2022. "Multilevel governance, PV solar energy, and entrepreneurship: the generation of green hydrogen as a fuel of renewable origin," Utilities Policy, Elsevier, vol. 79(C).
    18. Maria Triviño & Wilfried Thuiller & Mar Cabeza & Thomas Hickler & Miguel B Araújo, 2011. "The Contribution of Vegetation and Landscape Configuration for Predicting Environmental Change Impacts on Iberian Birds," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-10, December.
    19. Sutton, G.F. & Martin, G.D., 2022. "Testing MaxEnt model performance in a novel geographic region using an intentionally introduced insect," Ecological Modelling, Elsevier, vol. 473(C).
    20. Worthington, Thomas A. & Zhang, Tianjiao & Logue, Daniel R. & Mittelstet, Aaron R. & Brewer, Shannon K., 2016. "Landscape and flow metrics affecting the distribution of a federally-threatened fish: Improving management, model fit, and model transferability," Ecological Modelling, Elsevier, vol. 342(C), pages 1-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8888-:d:867331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.