IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i1p247-d1034499.html
   My bibliography  Save this article

Current and Potential Future Distribution of Endemic Salvia ceratophylloides Ard. (Lamiaceae)

Author

Listed:
  • Valentina Lucia Astrid Laface

    (Department of AGRARIA, Mediterranean University of Reggio Calabria, 89122 Reggio Calabria, Italy)

  • Carmelo Maria Musarella

    (Department of AGRARIA, Mediterranean University of Reggio Calabria, 89122 Reggio Calabria, Italy)

  • Gianmarco Tavilla

    (Department of Biological, Geological and Environmental Sciences, University of Catania, 95131 Catania, Italy)

  • Agostino Sorgonà

    (Department of AGRARIA, Mediterranean University of Reggio Calabria, 89122 Reggio Calabria, Italy)

  • Ana Cano-Ortiz

    (Department of Didactics of Experimental Social Sciences and Mathematics, Section of Didactics of Experimental Sciences, Faculty of Education, Complutense University of Madrid, 28040 Madrid, Spain)

  • Ricardo Quinto Canas

    (Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal)

  • Giovanni Spampinato

    (Department of AGRARIA, Mediterranean University of Reggio Calabria, 89122 Reggio Calabria, Italy)

Abstract

Human activities and climate change are the main factors causing habitat loss, jeopardising the survival of many species, especially those with limited range, such as endemic species. Recently, species distribution models (SDMs) have been used in conservation biology to assess their extinction risk, environmental dynamics, and potential distribution. This study analyses the potential, current and future distribution range of Salvia ceratophylloides Ard., an endemic perennial species of the Lamiaceae family that occurs exclusively in a limited suburban area of the city of Reggio Calabria (southern Italy). The MaxEnt model was employed to configure the current potential range of the species using bioclimatic and edaphic variables, and to predict the potential suitability of the habitat in relation to two future scenarios (SSP245 and SSP585) for the periods 2021–2040 and 2041–2060. The field survey, which spanned 5 years (2017–2021), involved 17 occurrence points. According to the results of the MaxEnt model, the current potential distribution is 237.321 km 2 , which considering the preferred substrates of the species and land-use constraints is re-estimated to 41.392 km 2 . The model obtained from the SSP245 future scenario shows a decrease in the area suitable for the species of 35% in the 2021–2040 period and 28% in the 2041–2060 period. The SSP585 scenario shows an increase in the range suitable for hosting the species of 167% in the 2021–2040 period and 171% in the 2041–2060 period. Assessing variation in the species distribution related to the impacts of climate change makes it possible to define priority areas for reintroduction and in situ conservation. Identifying areas presumably at risk or, on the contrary, suitable for hosting the species is of paramount importance for management and conservation plans for Salvia ceratophylloides .

Suggested Citation

  • Valentina Lucia Astrid Laface & Carmelo Maria Musarella & Gianmarco Tavilla & Agostino Sorgonà & Ana Cano-Ortiz & Ricardo Quinto Canas & Giovanni Spampinato, 2023. "Current and Potential Future Distribution of Endemic Salvia ceratophylloides Ard. (Lamiaceae)," Land, MDPI, vol. 12(1), pages 1-21, January.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:1:p:247-:d:1034499
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/1/247/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/1/247/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mauro A. M. Raposo & Carlos J. Pinto Gomes & Leonel J. R. Nunes, 2021. "Evaluation of Species Invasiveness: A Case Study with Acacia dealbata Link. on the Slopes of Cabeça (Seia-Portugal)," Sustainability, MDPI, vol. 13(20), pages 1-10, October.
    2. Simone Pesaresi & Diana Galdenzi & Edoardo Biondi & Simona Casavecchia, 2014. "Bioclimate of Italy: application of the worldwide bioclimatic classification system," Journal of Maps, Taylor & Francis Journals, vol. 10(4), pages 538-553, October.
    3. Shcheglovitova, Mariya & Anderson, Robert P., 2013. "Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes," Ecological Modelling, Elsevier, vol. 269(C), pages 9-17.
    4. Kevin Cianfaglione & Fabrizio Bartolucci & Giampiero Ciaschetti & Fabio Conti & Gianfranco Pirone, 2022. "Characterization of Thymus vulgaris subsp. vulgaris Community by Using a Multidisciplinary Approach: A Case Study from Central Italy," Sustainability, MDPI, vol. 14(7), pages 1-34, March.
    5. Valentina Lucia Astrid Laface & Carmelo Maria Musarella & Agostino Sorgonà & Giovanni Spampinato, 2022. "Analysis of the Population Structure and Dynamic of Endemic Salvia ceratophylloides Ard. (Lamiaceae)," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    6. Catarina Archer de Carvalho & Mauro Raposo & Carlos Pinto-Gomes & Rute Matos, 2022. "Native or Exotic: A Bibliographical Review of the Debate on Ecological Science Methodologies: Valuable Lessons for Urban Green Space Design," Land, MDPI, vol. 11(8), pages 1-17, July.
    7. Gian-Reto Walther & Eric Post & Peter Convey & Annette Menzel & Camille Parmesan & Trevor J. C. Beebee & Jean-Marc Fromentin & Ove Hoegh-Guldberg & Franz Bairlein, 2002. "Ecological responses to recent climate change," Nature, Nature, vol. 416(6879), pages 389-395, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valentina Lucia Astrid Laface & Carmelo Maria Musarella & Agostino Sorgonà & Giovanni Spampinato, 2022. "Analysis of the Population Structure and Dynamic of Endemic Salvia ceratophylloides Ard. (Lamiaceae)," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    2. Mayeul Dalleau & Stéphane Ciccione & Jeanne A Mortimer & Julie Garnier & Simon Benhamou & Jérôme Bourjea, 2012. "Nesting Phenology of Marine Turtles: Insights from a Regional Comparative Analysis on Green Turtle (Chelonia mydas)," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    3. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    4. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    5. Monika Punia & Suman Nain & Amit Kumar & Bhupendra Singh & Amit Prakash & Krishan Kumar & V. Jain, 2015. "Analysis of temperature variability over north-west part of India for the period 1970–2000," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 935-952, January.
    6. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    7. Nicoletta Cannone & M. Guglielmin & P. Convey & M. R. Worland & S. E. Favero Longo, 2016. "Vascular plant changes in extreme environments: effects of multiple drivers," Climatic Change, Springer, vol. 134(4), pages 651-665, February.
    8. Groeneveld, Jürgen & Johst, Karin & Kawaguchi, So & Meyer, Bettina & Teschke, Mathias & Grimm, Volker, 2015. "How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model," Ecological Modelling, Elsevier, vol. 303(C), pages 78-86.
    9. Norman Myers, 2003. "Conservation of Biodiversity: How Are We Doing?," Environment Systems and Decisions, Springer, vol. 23(1), pages 9-15, March.
    10. A. Haven Kiers & Billy Krimmel & Caroline Larsen-Bircher & Kate Hayes & Ash Zemenick & Julia Michaels, 2022. "Different Jargon, Same Goals: Collaborations between Landscape Architects and Ecologists to Maximize Biodiversity in Urban Lawn Conversions," Land, MDPI, vol. 11(10), pages 1-18, September.
    11. Donohue, John G. & Piiroinen, Petri T., 2015. "Mathematical modelling of seasonal migration with applications to climate change," Ecological Modelling, Elsevier, vol. 299(C), pages 79-94.
    12. John H Matthews & Bart AJ Wickel & Sarah Freeman, 2011. "Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions," PLOS Biology, Public Library of Science, vol. 9(9), pages 1-4, September.
    13. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
    14. Feng Dong & Chih-Ming Hung & Shou-Hsien Li & Xiao-Jun Yang, 2021. "Potential Himalayan community turnover through the Late Pleistocene," Climatic Change, Springer, vol. 164(1), pages 1-10, January.
    15. Ding, Helen & Nunes, Paulo A.L.D., 2014. "Modeling the links between biodiversity, ecosystem services and human wellbeing in the context of climate change: Results from an econometric analysis of the European forest ecosystems," Ecological Economics, Elsevier, vol. 97(C), pages 60-73.
    16. Chan, Nathan & Wichman, Casey, 2017. "The Effects of Climate on Leisure Demand: Evidence from North America," RFF Working Paper Series 17-20, Resources for the Future.
    17. Zhang, Jiarui & Jørgensen, Sven E. & Lu, Jianjian & Nielsen, Søren N. & Wang, Qiang, 2014. "A model for the contribution of macrophyte-derived organic carbon in harvested tidal freshwater marshes to surrounding estuarine and oceanic ecosystems and its response to global warming," Ecological Modelling, Elsevier, vol. 294(C), pages 105-116.
    18. Amaro, George & Fidelis, Elisangela Gomes & da Silva, Ricardo Siqueira & Marchioro, Cesar Augusto, 2023. "Effect of study area extent on the potential distribution of Species: A case study with models for Raoiella indica Hirst (Acari: Tenuipalpidae)," Ecological Modelling, Elsevier, vol. 483(C).
    19. Richter, Andries & Grasman, Johan, 2013. "The transmission of sustainable harvesting norms when agents are conditionally cooperative," Ecological Economics, Elsevier, vol. 93(C), pages 202-209.
    20. A. Kosanic & S. Harrison & K. Anderson & I. Kavcic, 2014. "Present and historical climate variability in South West England," Climatic Change, Springer, vol. 124(1), pages 221-237, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:1:p:247-:d:1034499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.