IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i24p10986-d1543873.html
   My bibliography  Save this article

Optimal Scheduling of Networked Microgrids Considering the Temporal Equilibrium Allocation of Annual Carbon Emission Allowance

Author

Listed:
  • Chengling Hu

    (State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Chongqing 400044, China)

  • Hao Bai

    (CSG Electric Power Research Institute, Guangzhou 510663, China)

  • Wei Li

    (CSG Electric Power Research Institute, Guangzhou 510663, China)

  • Kaigui Xie

    (State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Chongqing 400044, China)

  • Yipeng Liu

    (CSG Electric Power Research Institute, Guangzhou 510663, China)

  • Tong Liu

    (CSG Electric Power Research Institute, Guangzhou 510663, China)

  • Changzheng Shao

    (State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Chongqing 400044, China)

Abstract

The optimal scheduling of networked microgrids considering the coupled trading of energy and carbon emission allowance (CEA) has been extensively studied. Notably, the scheduling is performed on a daily basis, whereas the CEA is usually checked and determined once a year. The temporal mismatch between the daily scheduling and the yearly CEA should be addressed to realize the dynamic valuation of CEA. In this paper, the optimal scheduling of networked microgrids considering the temporal equilibrium allocation of annual CEA is investigated. Firstly, a CEA decomposition model is developed, which allocates allowance to individual microgrids and further decomposes them temporally using the entropy method. Secondly, a Lyapunov optimization-based low-carbon scheduling model is introduced to manage carbon emissions within each dispatch interval, ensuring annual CEA compliance and daily economic efficiency. Thirdly, a Stackelberg game-based energy–carbon coupling trading model is presented, which considers the uncertainties caused by fluctuations in external electricity and carbon prices to optimize trading prices and strategies of the microgrids. Finally, a test system is used to demonstrate the significant effects of emission reduction and the economic benefits of the proposed methods.

Suggested Citation

  • Chengling Hu & Hao Bai & Wei Li & Kaigui Xie & Yipeng Liu & Tong Liu & Changzheng Shao, 2024. "Optimal Scheduling of Networked Microgrids Considering the Temporal Equilibrium Allocation of Annual Carbon Emission Allowance," Sustainability, MDPI, vol. 16(24), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:10986-:d:1543873
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/24/10986/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/24/10986/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng, Huchen & Hu, Yu-Jie & Li, Chengjiang & Wang, Honglei, 2023. "Rolling horizon optimisation strategy and initial carbon allowance allocation model to reduce carbon emissions in the power industry: Case of China," Energy, Elsevier, vol. 277(C).
    2. Wang, Yongli & Liu, Zhen & Wang, Jingyan & Du, Boxin & Qin, Yumeng & Liu, Xiaoli & Liu, Lin, 2023. "A Stackelberg game-based approach to transaction optimization for distributed integrated energy system," Energy, Elsevier, vol. 283(C).
    3. Li, Junkai & Ge, Shaoyun & Liu, Hong & Yu, Qi & Zhang, Shida & Wang, Chengshan & Gu, Chenghong, 2024. "An electricity and carbon trading mechanism integrated with TSO-DSO-prosumer coordination," Applied Energy, Elsevier, vol. 356(C).
    4. Decai Liu & Yuxin Zhang, 2024. "Research on Location and Routing for Cold Chain Logistics in Health Resorts Considering Carbon Emissions," Sustainability, MDPI, vol. 16(15), pages 1-22, July.
    5. Li, Junkai & Ge, Shaoyun & Xu, Zhengyang & Liu, Hong & Li, Jifeng & Wang, Chengshan & Cheng, Xueying, 2023. "A network-secure peer-to-peer trading framework for electricity-carbon integrated market among local prosumers," Applied Energy, Elsevier, vol. 335(C).
    6. Shi, Wei & Li, Wei & Qiao, Fuwei & Wang, Weijuan & An, Yi & Zhang, Guowei, 2023. "An inter-provincial carbon quota study in China based on the contribution of clean energy to carbon reduction," Energy Policy, Elsevier, vol. 182(C).
    7. Pei Zhu & Xiaolong Lv & Quan Shao & Caijin Kuang & Weiwang Chen, 2024. "Optimization of Green Multimodal Transport Schemes Considering Order Consolidation under Uncertainty Conditions," Sustainability, MDPI, vol. 16(15), pages 1-29, August.
    8. Shi, Zhengkun & Yang, Yongbiao & Xu, Qingshan & Wu, Chenyu & Hua, Kui, 2023. "A low-carbon economic dispatch for integrated energy systems with CCUS considering multi-time-scale allocation of carbon allowance," Applied Energy, Elsevier, vol. 351(C).
    9. Ma, Siyuan & Mi, Yang & Shi, Shuai & Li, Dongdong & Xing, Haijun & Wang, Peng, 2024. "Low-carbon economic operation of energy hub integrated with linearization model and nodal energy-carbon price," Energy, Elsevier, vol. 294(C).
    10. Min Fu & Wensong Wu & Lixin Tian & Zaili Zhen & Jing Ye, 2023. "Analysis of Emission Reduction Mechanism of High-Tiered Carbon Tax under Green and Low Carbon Behavior," Energies, MDPI, vol. 16(22), pages 1-23, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Weiguang & Yang, Qiang, 2023. "Low carbon oriented collaborative energy management framework for multi-microgrid aggregated virtual power plant considering electricity trading," Applied Energy, Elsevier, vol. 351(C).
    2. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data," Resources, MDPI, vol. 12(9), pages 1-33, September.
    3. Wu, Chun & Chen, Xingying & Hua, Haochen & Yu, Kun & Gan, Lei & Shen, Jun & Ding, Yi, 2024. "Peer-to-peer energy trading optimization for community prosumers considering carbon cap-and-trade," Applied Energy, Elsevier, vol. 358(C).
    4. Tostado-Véliz, Marcos & Horrillo-Quintero, Pablo & García-Triviño, Pablo & Fernández-Ramírez, Luis M. & Jurado, Francisco, 2024. "Optimal sitting and sizing of hydrogen refilling stations in distribution networks under locational marginal prices," Applied Energy, Elsevier, vol. 374(C).
    5. Wang, Benke & Li, Chunhua & Ban, Yongshuang & Zhao, Zeming & Wang, Zengxu, 2024. "A two-tier bidding model considering a multi-stage offer‑carbon joint incentive clearing mechanism for coupled electricity and carbon markets," Applied Energy, Elsevier, vol. 368(C).
    6. Decai Tang & Jing Yan & Xin Sheng & Yuehao Hai & Valentina Boamah, 2023. "Research on Green Finance, Technological Innovation, and Industrial Structure Upgrading in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
    7. Wang, Haibing & Zhao, Anjie & Khan, Muhammad Qasim & Sun, Weiqing, 2024. "Optimal operation of energy hub considering reward-punishment ladder carbon trading and electrothermal demand coupling," Energy, Elsevier, vol. 286(C).
    8. Wu, Xiaoping & Liu, Peng & Yang, Lin & Shi, Zhuangfei & Lao, Yongshuai, 2024. "Impact of three carbon emission reduction policies on carbon verification behavior: An analysis based on evolutionary game theory," Energy, Elsevier, vol. 295(C).
    9. Yao, Wenliang & Wang, Chengfu & Yang, Ming & Wang, Kang & Dong, Xiaoming & Zhang, Zhenwei, 2023. "A tri-layer decision-making framework for IES considering the interaction of integrated demand response and multi-energy market clearing," Applied Energy, Elsevier, vol. 342(C).
    10. Wu, Min & Xu, Jiazhu & Shi, Zhenglu, 2023. "Low carbon economic dispatch of integrated energy system considering extended electric heating demand response," Energy, Elsevier, vol. 278(PA).
    11. Liang, Ziwen & Mu, Longhua, 2024. "Multi-agent low-carbon optimal dispatch of regional integrated energy system based on mixed game theory," Energy, Elsevier, vol. 295(C).
    12. Jiang, Kai & Wang, Kunyu & Wu, Chengyu & Chen, Guo & Xue, Yusheng & Dong, Zhaoyang & Liu, Nian, 2024. "Trajectory simulation and optimization for interactive electricity-carbon system evolution," Applied Energy, Elsevier, vol. 360(C).
    13. Li, Junkai & Ge, Shaoyun & Liu, Hong & Wang, Chengshan & Li, Huiqiang & Wang, Liyong, 2024. "Domestic P2P energy market design considering network reconfiguration and usage fees: Bi-level nonlinear programming and exact clearing algorithm," Applied Energy, Elsevier, vol. 368(C).
    14. Wang, Yifeng & Jiang, Aihua & Wang, Rui & Tian, Junyang, 2024. "A canonical coalitional game model incorporating motivational psychology analysis for incentivizing stable direct energy trading in smart grid," Energy, Elsevier, vol. 289(C).
    15. Xu, Xun & Shao, Zhenguo & Chen, Feixiong & Cheng, Guoyang, 2024. "Multi-game optimization operation strategy for integrated energy system considering spatiotemporal correlation of renewable energy," Energy, Elsevier, vol. 303(C).
    16. Wang, Yi & Jin, Zikang & Liang, Jing & Li, Zhongwen & Dinavahi, Venkata & Liang, Jun, 2024. "Low-carbon optimal scheduling of park-integrated energy system based on bidirectional Stackelberg-Nash game theory," Energy, Elsevier, vol. 305(C).
    17. Huang, Yu & Jin, Mingyue & Xie, Jiale & Peng, Yanjian & Zhong, Junjie, 2024. "Dynamic Bayesian game optimization method for multi-energy hub systems with incomplete load information," Energy, Elsevier, vol. 301(C).
    18. Hou, Hui & Ge, Xiangdi & Yan, Yulin & Lu, Yanchao & Zhang, Ji & Dong, Zhao Yang, 2024. "An integrated energy system “green-carbon” offset mechanism and optimization method with Stackelberg game," Energy, Elsevier, vol. 294(C).
    19. Ting, Zhang & Yunna, Wu, 2024. "Collaborative allocation model and balanced interaction strategy of multi flexible resources in the new power system based on Stackelberg game theory," Renewable Energy, Elsevier, vol. 220(C).
    20. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Energy Behaviors of Prosumers in Example of Polish Households," Energies, MDPI, vol. 16(7), pages 1-26, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:10986-:d:1543873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.