IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v310y2024ics0360544224030275.html
   My bibliography  Save this article

Bilevel low-carbon coordinated operation of integrated energy systems considering dynamic tiered carbon pricing methodology

Author

Listed:
  • Wu, Dongge
  • Chang, Xinyue
  • Xue, Yixun
  • Huang, Yuxi
  • Su, Jia
  • Sun, Hongbin

Abstract

The coordinated operation and management of energy and carbon emissions in an integrated energy system (IES) can effectively promote overall energy efficiency and reduce carbon emissions. However, allocating carbon emission responsibilities between transmission-level integrated energy system (TIES) and regional integrated energy system (RIES) is difficult. On the basis of carbon emission flow theory, a model for allocating carbon emission responsibility for IES is developed in this paper. Moreover, the Shapley value method is adopted to obtain the carbon emissions responsibility intervals at the RIES. A dynamic tiered carbon pricing methodology is proposed for the RIES on the basis of equitable carbon emission responsibility intervals. In addition, a bilevel coordinated operation model that imposes carbon price to more fully excavate the low-carbon benefits obtained from operating an IES is proposed. The upper-level model, namely, the TIES, explores the optimal low-carbon schedule for energy networks by imposing fixed carbon price on the energy production costs. The lower-level model, namely, the RIES, investigates the optimal low-carbon energy supply scheme of multienergy coupling equipment and imposes dynamic tiered carbon pricing to adjust the amount of electricity and natural gas consumed. After the whole bilevel model is solved iteratively, equilibrium is reached. Case studies verify the potential and efficacy of the proposed bilevel model, demonstrating superior effectiveness in reducing carbon emissions compared with existing methods.

Suggested Citation

  • Wu, Dongge & Chang, Xinyue & Xue, Yixun & Huang, Yuxi & Su, Jia & Sun, Hongbin, 2024. "Bilevel low-carbon coordinated operation of integrated energy systems considering dynamic tiered carbon pricing methodology," Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224030275
    DOI: 10.1016/j.energy.2024.133251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224030275
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Liangce & Lu, Zhigang & Zhang, Jiangfeng & Geng, Lijun & Zhao, Hao & Li, Xueping, 2018. "Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas," Applied Energy, Elsevier, vol. 224(C), pages 357-370.
    2. Yun, Yunyun & Zhang, Dahai & Yang, Shengchun & Li, Yaping & Yan, Jiahao, 2023. "Low-carbon optimal dispatch of integrated energy system considering the operation of oxy-fuel combustion coupled with power-to-gas and hydrogen-doped gas equipment," Energy, Elsevier, vol. 283(C).
    3. Hu, Junjie & Wang, Yudong & Dong, Lei, 2024. "Low carbon-oriented planning of shared energy storage station for multiple integrated energy systems considering energy-carbon flow and carbon emission reduction," Energy, Elsevier, vol. 290(C).
    4. Wei, Zhenbo & Wei, Pingan & Chen, Chiyao & Gao, Hongjun & Luo, Zihang & Xiang, Yue, 2023. "Two-stage stochastic decentralized low-carbon economic dispatch of integrated electricity-gas networks," Energy, Elsevier, vol. 282(C).
    5. Wang, Haiyang & Li, Ke & Zhang, Chenghui & Chen, Jianfei, 2024. "Capacity and operation joint optimization for integrated energy system based on Nash bargaining game," Energy, Elsevier, vol. 305(C).
    6. Zhou, Yanting & Ma, Zhongjing & Shi, Xingyu & Zou, Suli, 2024. "Multi-agent optimal scheduling for integrated energy system considering the global carbon emission constraint," Energy, Elsevier, vol. 288(C).
    7. Álvarez-Mozos, Mikel & Ehlers, Lars, 2024. "Externalities and the (pre)nucleolus in cooperative games," Mathematical Social Sciences, Elsevier, vol. 128(C), pages 10-15.
    8. Ma, Siyuan & Mi, Yang & Shi, Shuai & Li, Dongdong & Xing, Haijun & Wang, Peng, 2024. "Low-carbon economic operation of energy hub integrated with linearization model and nodal energy-carbon price," Energy, Elsevier, vol. 294(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Yixiang & Yu, Lean & Zhang, Guoxing & Lu, Zhiming & Wu, Jiaqian, 2023. "Source-load uncertainty-based multi-objective multi-energy complementary optimal scheduling," Renewable Energy, Elsevier, vol. 219(P1).
    2. Xiang, Yue & Guo, Yongtao & Wu, Gang & Liu, Junyong & Sun, Wei & Lei, Yutian & Zeng, Pingliang, 2022. "Low-carbon economic planning of integrated electricity-gas energy systems," Energy, Elsevier, vol. 249(C).
    3. Yang, Linfeng & Li, Wei & Xu, Yan & Zhang, Cuo & Chen, Shifei, 2021. "Two novel locally ideal three-period unit commitment formulations in power systems," Applied Energy, Elsevier, vol. 284(C).
    4. Xiang, Yue & Wu, Gang & Shen, Xiaodong & Ma, Yuhang & Gou, Jing & Xu, Weiting & Liu, Junyong, 2021. "Low-carbon economic dispatch of electricity-gas systems," Energy, Elsevier, vol. 226(C).
    5. Fambri, Gabriele & Diaz-Londono, Cesar & Mazza, Andrea & Badami, Marco & Sihvonen, Teemu & Weiss, Robert, 2022. "Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration," Applied Energy, Elsevier, vol. 312(C).
    6. Gao, Xianhui & Wang, Sheng & Sun, Ying & Zhai, Junyi & Chen, Nan & Zhang, Xiao-Ping, 2024. "Low-carbon energy scheduling for integrated energy systems considering offshore wind power hydrogen production and dynamic hydrogen doping strategy," Applied Energy, Elsevier, vol. 376(PA).
    7. Giri, Binoy Krishna & Roy, Sankar Kumar, 2024. "Fuzzy-random robust flexible programming on sustainable closed-loop renewable energy supply chain," Applied Energy, Elsevier, vol. 363(C).
    8. Li, Wei & Lu, Can, 2019. "The multiple effectiveness of state natural gas consumption constraint policies for achieving sustainable development targets in China," Applied Energy, Elsevier, vol. 235(C), pages 685-698.
    9. Li, Bo & Li, Xu & Su, Qingyu, 2022. "A system and game strategy for the isolated island electric-gas deeply coupled energy network," Applied Energy, Elsevier, vol. 306(PA).
    10. Gao, Xianhui & Wang, Sheng & Sun, Ying & Zhai, Junyi, 2024. "Low-carbon operation of integrated electricity–gas system with hydrogen injection considering hydrogen mixed gas turbine and laddered carbon trading," Applied Energy, Elsevier, vol. 374(C).
    11. Qu, Kaiping & Shi, Shouyuan & Yu, Tao & Wang, Wenrui, 2019. "A convex decentralized optimization for environmental-economic power and gas system considering diversified emission control," Applied Energy, Elsevier, vol. 240(C), pages 630-645.
    12. Wang, Shouxiang & Wang, Shaomin & Zhao, Qianyu & Dong, Shuai & Li, Hao, 2023. "Optimal dispatch of integrated energy station considering carbon capture and hydrogen demand," Energy, Elsevier, vol. 269(C).
    13. Gu, Haifei & Li, Yang & Yu, Jie & Wu, Chen & Song, Tianli & Xu, Jinzhou, 2020. "Bi-level optimal low-carbon economic dispatch for an industrial park with consideration of multi-energy price incentives," Applied Energy, Elsevier, vol. 262(C).
    14. Wang, Haibing & Zhao, Anjie & Khan, Muhammad Qasim & Sun, Weiqing, 2024. "Optimal operation of energy hub considering reward-punishment ladder carbon trading and electrothermal demand coupling," Energy, Elsevier, vol. 286(C).
    15. Cui, Shuhui & Lyu, Shouping & Ma, Yongzhi & Wang, Kai, 2024. "Improved informer PV power short-term prediction model based on weather typing and AHA-VMD-MPE," Energy, Elsevier, vol. 307(C).
    16. Danko Vidović & Elis Sutlović & Matislav Majstrović, 2021. "A Unique Electrical Model for the Steady-State Analysis of a Multi-Energy System," Energies, MDPI, vol. 14(18), pages 1-23, September.
    17. Wu, Gang & Xiang, Yue & Liu, Junyong & Shen, Xiaodong & Cheng, Shikun & Hong, Bowen & Jawad, Shafqat, 2020. "Distributed energy-reserve Co-Optimization of electricity and natural gas systems with multi-type reserve resources," Energy, Elsevier, vol. 207(C).
    18. Wu, Chenyu & Gu, Wei & Xu, Yinliang & Jiang, Ping & Lu, Shuai & Zhao, Bo, 2018. "Bi-level optimization model for integrated energy system considering the thermal comfort of heat customers," Applied Energy, Elsevier, vol. 232(C), pages 607-616.
    19. Xiaoling Yuan & Can Cui & Guanxin Zhu & Hanqing Ma & Hao Cao, 2023. "Research on the Optimization of Energy–Carbon Co-Sharing Operation in Multiple Multi-Energy Microgrids Based on Nash Negotiation," Energies, MDPI, vol. 16(15), pages 1-20, July.
    20. Bailera, Manuel & Peña, Begoña & Lisbona, Pilar & Romeo, Luis M., 2018. "Decision-making methodology for managing photovoltaic surplus electricity through Power to Gas: Combined heat and power in urban buildings," Applied Energy, Elsevier, vol. 228(C), pages 1032-1045.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224030275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.