IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v368y2024ics0306261924008808.html
   My bibliography  Save this article

A two-tier bidding model considering a multi-stage offer‑carbon joint incentive clearing mechanism for coupled electricity and carbon markets

Author

Listed:
  • Wang, Benke
  • Li, Chunhua
  • Ban, Yongshuang
  • Zhao, Zeming
  • Wang, Zengxu

Abstract

To facilitate the coupling of electricity and carbon markets, a two-layer bidding model considering a multi-stage offer‑carbon joint incentive clearing mechanism is proposed. The upper layer models the bidding strategies of renewable energy units and thermal power generating units, and the lower layer is the market clearing layer. A multi-stage offer‑carbon joint incentive clearing mechanism is proposed. In the pre-clearing stage, the environmental benefit factor of the carbon market is introduced to adjust the bidding strategy of the units, the carbon emission intensity enters the market in the form of price, the environmental benefit of the generating units is fully considered, and the carbon quota allocation model of units is established; in the second stage, carbon trading cost is added based on the pre-clearing model to further optimize the unit output; in the third stage, the clearing model with the minimum cost of electricity energy is established for tracking the clearing price. Under this mechanism, the carbon trading cost is traded on the market and unit offers are combined with carbon element to participate in market trading. Three bidding models with different clearing mechanisms are set up, and the results of the arithmetic example show that the proposed model can realize the balance between the economic and low-carbon goals of market clearing, and can achieve the maximum carbon emission reduction based on no increase in the total cost of electric-carbon coupling. As the share of renewable energy increases, the clearing price will decrease. A reasonable offer from renewable energy sources can avoid their interests being jeopardized. Concurrently, increasing the initial carbon price can effectively guide the electricity market to develop in a cleaner direction.

Suggested Citation

  • Wang, Benke & Li, Chunhua & Ban, Yongshuang & Zhao, Zeming & Wang, Zengxu, 2024. "A two-tier bidding model considering a multi-stage offer‑carbon joint incentive clearing mechanism for coupled electricity and carbon markets," Applied Energy, Elsevier, vol. 368(C).
  • Handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924008808
    DOI: 10.1016/j.apenergy.2024.123497
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924008808
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schusser, Sandra & Jaraitė, Jūratė, 2018. "Explaining the interplay of three markets: Green certificates, carbon emissions and electricity," Energy Economics, Elsevier, vol. 71(C), pages 1-13.
    2. Chang, Xin & Wu, Zhaoyuan & Wang, Jingting & Zhang, Xingyu & Zhou, Ming & Yu, Tao & Wang, Yuyang, 2023. "The coupling effect of carbon emission trading and tradable green certificates under electricity marketization in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    3. Tiwari, Aviral Kumar & Aikins Abakah, Emmanuel Joel & Gabauer, David & Dwumfour, Richard Adjei, 2022. "Dynamic spillover effects among green bond, renewable energy stocks and carbon markets during COVID-19 pandemic: Implications for hedging and investments strategies," Global Finance Journal, Elsevier, vol. 51(C).
    4. Li, Junkai & Ge, Shaoyun & Xu, Zhengyang & Liu, Hong & Li, Jifeng & Wang, Chengshan & Cheng, Xueying, 2023. "A network-secure peer-to-peer trading framework for electricity-carbon integrated market among local prosumers," Applied Energy, Elsevier, vol. 335(C).
    5. Frew, Bethany & Bashar Anwar, Muhammad & Dalvi, Sourabh & Brooks, Adria, 2023. "The interaction of wholesale electricity market structures under futures with decarbonization policy goals: A complexity conundrum," Applied Energy, Elsevier, vol. 339(C).
    6. Xiang, Yue & Wu, Gang & Shen, Xiaodong & Ma, Yuhang & Gou, Jing & Xu, Weiting & Liu, Junyong, 2021. "Low-carbon economic dispatch of electricity-gas systems," Energy, Elsevier, vol. 226(C).
    7. Chen, Zhongfei & Zhang, Xiao & Chen, Fanglin, 2021. "Do carbon emission trading schemes stimulate green innovation in enterprises? Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    8. Jia, Zhijie & Lin, Boqiang & Wen, Shiyan, 2022. "Electricity market Reform: The perspective of price regulation and carbon neutrality," Applied Energy, Elsevier, vol. 328(C).
    9. Xenophon, Aleksis Kazubiernis & Hill, David John, 2019. "Emissions reduction and wholesale electricity price targeting using an output-based mechanism," Applied Energy, Elsevier, vol. 242(C), pages 1050-1063.
    10. Zhang, Xinyue & Guo, Xiaopeng & Zhang, Xingping, 2023. "Bidding modes for renewable energy considering electricity-carbon integrated market mechanism based on multi-agent hybrid game," Energy, Elsevier, vol. 263(PA).
    11. Chi, Yuan-ying & Zhao, Hao & Hu, Yu & Yuan, Yong-ke & Pang, Yue-xia, 2022. "The impact of allocation methods on carbon emission trading under electricity marketization reform in China: A system dynamics analysis," Energy, Elsevier, vol. 259(C).
    12. Naeem, Muhammad Abubakr & Arfaoui, Nadia, 2023. "Exploring downside risk dependence across energy markets: Electricity, conventional energy, carbon, and clean energy during episodes of market crises," Energy Economics, Elsevier, vol. 127(PB).
    13. Jiang, Kai & Yan, Xiaohe & Liu, Nian & Wang, Peng, 2022. "Energy trade-offs in coupled ICM and electricity market under dynamic carbon emission intensity," Energy, Elsevier, vol. 260(C).
    14. Fleschutz, Markus & Bohlayer, Markus & Braun, Marco & Henze, Gregor & Murphy, Michael D., 2021. "The effect of price-based demand response on carbon emissions in European electricity markets: The importance of adequate carbon prices," Applied Energy, Elsevier, vol. 295(C).
    15. Ahonen, Elena & Corbet, Shaen & Goodell, John W. & Günay, Samet & Larkin, Charles, 2022. "Are carbon futures prices stable? New evidence during negative oil," Finance Research Letters, Elsevier, vol. 47(PB).
    16. Dimitriadis, Christos N. & Tsimopoulos, Evangelos G. & Georgiadis, Michael C., 2023. "Optimal bidding strategy of a gas-fired power plant in interdependent low-carbon electricity and natural gas markets," Energy, Elsevier, vol. 277(C).
    17. Saeian, Hosein & Niknam, Taher & Zare, Mohsen & Aghaei, Jamshid, 2022. "Coordinated optimal bidding strategies methods of aggregated microgrids: A game theory-based demand side management under an electricity market environment," Energy, Elsevier, vol. 245(C).
    18. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
    19. Ren, Kezheng & Liu, Jun & Liu, Xinglei & Nie, Yongxin, 2023. "Reinforcement Learning-Based Bi-Level strategic bidding model of Gas-fired unit in integrated electricity and natural gas markets preventing market manipulation," Applied Energy, Elsevier, vol. 336(C).
    20. Li, Wanying & Dong, Fugui & Ji, Zhengsen & Xia, Meijuan, 2023. "Analysis of the compound differential evolution game of new energy manufacturers’ two-stage market behavior under the weight of consumption responsibility," Energy, Elsevier, vol. 264(C).
    21. Wang, Hao-ran & Feng, Tian-tian & Zhong, Cheng, 2023. "Effectiveness of CO2 cost pass-through to electricity prices under “electricity-carbon” market coupling in China," Energy, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Kai & Wang, Kunyu & Wu, Chengyu & Chen, Guo & Xue, Yusheng & Dong, Zhaoyang & Liu, Nian, 2024. "Trajectory simulation and optimization for interactive electricity-carbon system evolution," Applied Energy, Elsevier, vol. 360(C).
    2. Yan, Sizhe & Wang, Weiqing & Li, Xiaozhu & Zhao, Yi, 2022. "Research on a cross-regional robust trading strategy based on multiple market mechanisms," Energy, Elsevier, vol. 261(PB).
    3. Naeem, Muhammad Abubakr & Arfaoui, Nadia, 2023. "Exploring downside risk dependence across energy markets: Electricity, conventional energy, carbon, and clean energy during episodes of market crises," Energy Economics, Elsevier, vol. 127(PB).
    4. Wang, Yunqi & Qiu, Jing & Tao, Yuechuan, 2022. "Robust energy systems scheduling considering uncertainties and demand side emission impacts," Energy, Elsevier, vol. 239(PD).
    5. Li, Xing & Liu, Zimin & Wu, Honglei & Yang, Dan, 2024. "Calculation and optimization of China's power distortion under carbon peaking target," Energy, Elsevier, vol. 306(C).
    6. Zhang, Xinyue & Guo, Xiaopeng & Zhang, Xingping, 2023. "Bidding modes for renewable energy considering electricity-carbon integrated market mechanism based on multi-agent hybrid game," Energy, Elsevier, vol. 263(PA).
    7. Wang, Yi & Yang, Zhifang & Yu, Juan & Liu, Junyong, 2023. "An optimization-based partial marginal pricing method to reduce excessive consumer payment in electricity markets," Applied Energy, Elsevier, vol. 352(C).
    8. Xin-gang, Zhao & Shuran, Hu & Hui, Wang & Haowei, Chen & Wenbin, Zhang & Wenjie, Lu, 2024. "Energy, economic, and environmental impacts of electricity market-oriented reform and the carbon emissions trading: A recursive dynamic CGE model in China," Energy, Elsevier, vol. 298(C).
    9. Wu, Shengyang & Ding, Zhaohao & Wang, Jingyu & Shi, Dongyuan, 2023. "Unveiling bidding uncertainties in electricity markets: A Bayesian deep learning framework based on accurate variational inference," Energy, Elsevier, vol. 276(C).
    10. Zhao, Jing & Zhang, Qin & Zhou, Dequn, 2023. "Can marketed on-grid price drive the realization of energy transition in China’s power industry under the background of carbon neutrality?," Energy, Elsevier, vol. 276(C).
    11. Jiang, Lan & Meng, Ming, 2024. "Optimal production decision of hybrid power generation enterprises in multi-quota policy coupled markets," Energy Economics, Elsevier, vol. 134(C).
    12. Yuan, Rongsheng & Liu, Ming & Chen, Weixiong & Yan, Junjie, 2024. "Costs versus revenues of flexibility enhancement techniques for thermal power units in electricity-carbon joint markets," Energy, Elsevier, vol. 302(C).
    13. Guo, Xiaopeng & Zhang, Xinyue & Zhang, Xingping, 2024. "Incentive-oriented power‑carbon emissions trading-tradable green certificate integrated market mechanisms using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 357(C).
    14. Xu, Danyang & Hu, Yang & Corbet, Shaen & Hou, Yang (Greg) & Oxley, Les, 2024. "Green bonds and traditional and emerging investments: Understanding connectedness during crises," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    15. Razzaq, Asif & Sharif, Arshian & Yang, Xiaodong & Dogan, Eyup, 2024. "Influence mechanism of electricity price distortion on industrial green transformation: A spatial analysis of Chinese regions," Energy Economics, Elsevier, vol. 130(C).
    16. Zhang, Xiaoshun & Guo, Zhengxun & Pan, Feng & Yang, Yuyao & Li, Chuansheng, 2023. "Dynamic carbon emission factor based interactive control of distribution network by a generalized regression neural network assisted optimization," Energy, Elsevier, vol. 283(C).
    17. Haiwen Zhao & Miao Yu & Juan Meng & Yonghong Jiang, 2024. "Examining the Spillover Effects of Renewable Energy Policies on China’s Traditional Energy Industries and Stock Markets," Energies, MDPI, vol. 17(11), pages 1-18, May.
    18. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data," Resources, MDPI, vol. 12(9), pages 1-33, September.
    19. Wei, Yu & Wang, Yizhi & Vigne, Samuel A. & Ma, Zhenyu, 2023. "Alarming contagion effects: The dangerous ripple effect of extreme price spillovers across crude oil, carbon emission allowance, and agriculture futures markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    20. Ying Zhang & Yingli Huang, 2023. "Killing Two Birds with One Stone or Missing One of Them? The Synergistic Governance Effect of China’s Carbon Emissions Trading Scheme on Pollution Control and Carbon Emission Reduction," Sustainability, MDPI, vol. 15(13), pages 1-25, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924008808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.