IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i24p11261-d1550044.html
   My bibliography  Save this article

Assessing Renewable Energy Development Potential in Polish Voivodeships: A Comparative Regional Analysis

Author

Listed:
  • Aleksander Wasiuta

    (Department of Economics, Faculty of Economics, University of Life Sciences in Poznan, Wojska Polskiego Str. 28, 60-637 Poznan, Poland)

Abstract

This work evaluates the renewable energy development potential of Polish voivodeships based on the TOPSIS method and spatial autocorrelation analysis. Data were obtained from the Polish Local Data Bank, covering 22 indicators in the field of economic, social, environmental, and energy related to renewable energy initiatives. The TOPSIS method was applied to construct a synthetic indicator for each voivodeship, facilitating a hierarchical ranking based on their proximity to an ideal solution representing optimal conditions. The results indicate that the Mazowiecki voivodeship leads the list in terms of renewable energy development potential, followed by Małopolskie i Pomorskie, and that this is mainly due to good economic conditions and large investments in renewable energy projects. Spatial autocorrelation analysis yielded a Moran’s I value of –0.1137 with a Z score of 0.303 and a p value of 0.752, suggesting a weak negative spatial autocorrelation that is not statistically significant. This implies that the distribution of renewable energy potential across voivodeships is largely random and is not influenced by spatial proximity. The study concludes that non-spatial factors play a more significant role in renewable energy development potential, offering valuable insights for policymakers and stakeholders to allow them to focus on economic and social variables when promoting renewable energy initiatives in Poland.

Suggested Citation

  • Aleksander Wasiuta, 2024. "Assessing Renewable Energy Development Potential in Polish Voivodeships: A Comparative Regional Analysis," Sustainability, MDPI, vol. 16(24), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11261-:d:1550044
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/24/11261/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/24/11261/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Isabel Gallego, 2006. "The use of economic, social and environmental indicators as a measure of sustainable development in Spain," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 13(2), pages 78-97, May.
    2. Kowalski, Katharina & Stagl, Sigrid & Madlener, Reinhard & Omann, Ines, 2009. "Sustainable energy futures: Methodological challenges in combining scenarios and participatory multi-criteria analysis," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1063-1074, September.
    3. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    4. Hassan, Rakibul & Das, Barun K. & Hasan, Mahmudul, 2022. "Integrated off-grid hybrid renewable energy system optimization based on economic, environmental, and social indicators for sustainable development," Energy, Elsevier, vol. 250(C).
    5. Fadly, Dalia & Fontes, Francisco, 2019. "Geographical proximity and renewable energy diffusion: An empirical approach," Energy Policy, Elsevier, vol. 129(C), pages 422-435.
    6. Agnieszka Brelik & Piotr Nowaczyk & Katarzyna Cheba, 2023. "The Economic Importance of Offshore Wind Energy Development in Poland," Energies, MDPI, vol. 16(23), pages 1-23, November.
    7. Tolga Genc, 2014. "Sensitivity analysis on PROMETHEE and TOPSIS weights," International Journal of Management and Decision Making, Inderscience Enterprises Ltd, vol. 13(4), pages 403-421.
    8. Jerry L. Holechek & Hatim M. E. Geli & Mohammed N. Sawalhah & Raul Valdez, 2022. "A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    9. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    10. Wei, Max & Patadia, Shana & Kammen, Daniel M., 2010. "Putting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US?," Energy Policy, Elsevier, vol. 38(2), pages 919-931, February.
    11. Jacobson, Mark Z. & Delucchi, Mark A. & Cameron, Mary A. & Mathiesen, Brian V., 2018. "Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes," Renewable Energy, Elsevier, vol. 123(C), pages 236-248.
    12. Kourkoumpas, Dimitrios-Sotirios & Benekos, Georgios & Nikolopoulos, Nikolaos & Karellas, Sotirios & Grammelis, Panagiotis & Kakaras, Emmanouel, 2018. "A review of key environmental and energy performance indicators for the case of renewable energy systems when integrated with storage solutions," Applied Energy, Elsevier, vol. 231(C), pages 380-398.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riasad Amin & Deepika Mathur & David Ompong & Kerstin K. Zander, 2024. "Integrating Social Aspects into Energy System Modelling Through the Lens of Public Perspectives: A Review," Energies, MDPI, vol. 17(23), pages 1-33, November.
    2. Khaled Alshehri & Mohadese Basirati & Devin Sapsford & Michael Harbottle & Peter Cleall, 2024. "Nature-Based Secondary Resource Recovery under Climate Change Uncertainty: A Robust Multi-Objective Optimisation Methodology," Sustainability, MDPI, vol. 16(16), pages 1-27, August.
    3. Hernandez-Perdomo, Elvis A. & Mun, Johnathan & Rocco S., Claudio M., 2017. "Active management in state-owned energy companies: Integrating a real options approach into multicriteria analysis to make companies sustainable," Applied Energy, Elsevier, vol. 195(C), pages 487-502.
    4. Apostolou, Dimitrios & Enevoldsen, Peter, 2019. "The past, present and potential of hydrogen as a multifunctional storage application for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 917-929.
    5. Colla, Martin & Ioannou, Anastasia & Falcone, Gioia, 2020. "Critical review of competitiveness indicators for energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    6. Büyüközkan, Gülçin & Karabulut, Yağmur, 2017. "Energy project performance evaluation with sustainability perspective," Energy, Elsevier, vol. 119(C), pages 549-560.
    7. Zhao, Xu & Luo, Dongkun, 2017. "Driving force of rising renewable energy in China: Environment, regulation and employment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 48-56.
    8. Pan, Xiuzhen & Wei, Zixiang & Han, Botang & Shahbaz, Muhammad, 2021. "The heterogeneous impacts of interregional green technology spillover on energy intensity in China," Energy Economics, Elsevier, vol. 96(C).
    9. Lehmann, Paul & Gawel, Erik, 2013. "Why should support schemes for renewable electricity complement the EU emissions trading scheme?," Energy Policy, Elsevier, vol. 52(C), pages 597-607.
    10. Zhang, Jianhua & Ballas, Dimitris & Liu, Xiaolong, 2024. "Global climate change mitigation technology diffusion: A network perspective," Energy Economics, Elsevier, vol. 133(C).
    11. Wang, Xiaoqing & Jin, Wenxin & Qin, Meng & Su, Chi-Wei & Umar, Muhammad, 2024. "Pushing forward the deployment of renewable energy: Do cross-national spillovers of policy instruments matter?," Energy, Elsevier, vol. 301(C).
    12. Aleksander Wasiuta, 2024. "Progress and Disparity: A Decade of Renewable Energy Development in Europe," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 350-364.
    13. Abbas Mardani & Ahmad Jusoh & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Zainab Khalifah, 2015. "Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches," Sustainability, MDPI, vol. 7(10), pages 1-38, October.
    14. Mateusz Piwowarski & Mariusz Borawski & Kesra Nermend, 2021. "The Problem of Non-Typical Objects in the Multidimensional Comparative Analysis of the Level of Renewable Energy Development," Energies, MDPI, vol. 14(18), pages 1-24, September.
    15. Lauren E. Natividad & Pablo Benalcazar, 2023. "Hybrid Renewable Energy Systems for Sustainable Rural Development: Perspectives and Challenges in Energy Systems Modeling," Energies, MDPI, vol. 16(3), pages 1-15, January.
    16. Taimur Al Shidhani & Anastasia Ioannou & Gioia Falcone, 2020. "Multi-Objective Optimisation for Power System Planning Integrating Sustainability Indicators," Energies, MDPI, vol. 13(9), pages 1-32, May.
    17. Stelios Grafakos & Alexandros Flamos & Elena Marie Enseñado, 2015. "Preferences Matter: A Constructive Approach to Incorporating Local Stakeholders’ Preferences in the Sustainability Evaluation of Energy Technologies," Sustainability, MDPI, vol. 7(8), pages 1-39, August.
    18. Zapata, Sebastian & Castaneda, Monica & Aristizabal, Andres J. & Dyner, Isaac, 2022. "Renewables for supporting supply adequacy in Colombia," Energy, Elsevier, vol. 239(PC).
    19. Valeria Costantini & Francesco Crespi & Giovanni Marin & Elena Paglialunga, 2016. "Eco-innovation, sustainable supply chains and environmental performance in European industries," LEM Papers Series 2016/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    20. Yongming Song & Jun Hu, 2017. "Vector similarity measures of hesitant fuzzy linguistic term sets and their applications," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11261-:d:1550044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.