IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5534-d1424794.html
   My bibliography  Save this article

Analysis of the Energy-Saving Effect of a Novel Central Air-Conditioning System with an Internal Heat Exchanger in Summer

Author

Listed:
  • Sensen Deng

    (School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243002, China)

  • Dong Wang

    (School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243002, China)

  • Kangkang Zhang

    (School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243002, China)

  • Mengxue Li

    (School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243002, China)

  • Yuehong Lu

    (School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243002, China)

Abstract

In this paper, a novel central air-conditioning system with an internal heat exchanger is proposed and analyzed for its energy-saving effect. Two frequently used systems are chosen as the reference systems, i.e., a conventional system with a sensible heat exchanger (Reference System I) and a conventional system with a total heat exchanger (Reference System II). Analysis models are built to simulate the performance of the system. The energy-saving effects of the proposed system and the two reference systems under different conditions are theoretically calculated using a case-studied shopping mall in Nanjing, China. The results show that the influence of indoor relative humidity (RH) on the energy-saving effect is much greater than that of the indoor design temperature. Indoor design parameters have a greater impact on energy saving than outdoor design parameters. Under the studied conditions, the maximum energy-saving rates of the proposed system, Reference System I, and Reference System II, are 52.7%, 2.3%, and 12.1%, respectively. With the decrease in fresh-air ratio from 70% to 20%, the difference in energy-saving rates between the proposed system and Reference System II (Reference System I) can increase from 5% to 23% (15% to 30%). Therefore, the proposed system has obvious energy-saving potential and advantage, especially under the condition of a lower fresh-air ratio.

Suggested Citation

  • Sensen Deng & Dong Wang & Kangkang Zhang & Mengxue Li & Yuehong Lu, 2024. "Analysis of the Energy-Saving Effect of a Novel Central Air-Conditioning System with an Internal Heat Exchanger in Summer," Sustainability, MDPI, vol. 16(13), pages 1-20, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5534-:d:1424794
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5534/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5534/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xie, Kang & Hui, Hongxun & Ding, Yi & Song, Yonghua & Ye, Chengjin & Zheng, Wandong & Ye, Shuiquan, 2022. "Modeling and control of central air conditionings for providing regulation services for power systems," Applied Energy, Elsevier, vol. 315(C).
    2. Song, Xia & Zhang, Lun & Zhang, Xiaosong, 2018. "NTUm-based optimization of heat or heat pump driven liquid desiccant dehumidification systems regenerated by fresh air or return air," Energy, Elsevier, vol. 158(C), pages 269-280.
    3. Yang, C.M. & Chen, C.C. & Chen, S.L., 2013. "Energy-efficient air conditioning system with combination of radiant cooling and periodic total heat exchanger," Energy, Elsevier, vol. 59(C), pages 467-477.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Chih-Hao & Hsu, Chien-Yeh & Chen, Chih-Chieh & Chiang, Yuan-Ching & Chen, Sih-Li, 2016. "Silica gel/polymer composite desiccant wheel combined with heat pump for air-conditioning systems," Energy, Elsevier, vol. 94(C), pages 87-99.
    2. Liang, Chenjiyu & Li, Xianting & Zheng, Gonghang, 2022. "Optimizing air conditioning systems by considering the grades of sensible and latent heat loads," Applied Energy, Elsevier, vol. 322(C).
    3. Qiang Si & Xiaosong Zhang, 2016. "Experimental and Numerical Study of the Radiant Induction-Unit and the Induction Radiant Air-Conditioning System," Energies, MDPI, vol. 10(1), pages 1-14, December.
    4. Liu, Wei & Gong, Yanfeng & Niu, Xiaofeng & Shen, Junjie & Kosonen, Risto, 2019. "Dynamic modeling of liquid-desiccant regenerator based on a state–space method," Applied Energy, Elsevier, vol. 240(C), pages 744-753.
    5. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    6. Yang, Zili & Tao, Ruiyang & Chen, Lu-An & Zhong, Ke & Chen, Bin, 2020. "Feasibility study on improving the performance of atomization liquid desiccant dehumidifier with standing-wave ultrasound," Energy, Elsevier, vol. 205(C).
    7. Dong, Lianxin & Wu, Qing & Hong, Juhua & Wang, Zhihua & Fan, Shuai & He, Guangyu, 2023. "An adaptive decentralized regulation strategy for the cluster with massive inverter air conditionings," Applied Energy, Elsevier, vol. 330(PA).
    8. Yu, Yuebin & Niu, Fuxin & Guo, Heinz-Axel & Woradechjumroen, Denchai, 2016. "A thermo-activated wall for load reduction and supplementary cooling with free to low-cost thermal water," Energy, Elsevier, vol. 99(C), pages 250-265.
    9. Chiang, Yuan-Ching & Chen, Chih-Hao & Chiang, Yi-Chin & Chen, Sih-Li, 2016. "Circulating inclined fluidized beds with application for desiccant dehumidification systems," Applied Energy, Elsevier, vol. 175(C), pages 199-211.
    10. Liang, Jyun-De & Tsai, Lu-Kuan & Chai, Shaowei & Zhao, Yao & Chiang, Yuan-Ching & Dai, Yanjun & Chen, Sih-Li, 2023. "Experimental investigation and analysis of alumina/polymer/alginate composite desiccant materials," Energy, Elsevier, vol. 280(C).
    11. Ibrahim, Mohamad & Wurtz, Etienne & Biwole, Pascal Henry & Achard, Patrick, 2014. "Transferring the south solar energy to the north facade through embedded water pipes," Energy, Elsevier, vol. 78(C), pages 834-845.
    12. Sebastian Englart & Krzysztof Rajski, 2021. "Performance Investigation of a Hollow Fiber Membrane-Based Desiccant Liquid Air Dehumidification System," Energies, MDPI, vol. 14(11), pages 1-20, June.
    13. Sun, Yue & Luo, Zhiwen & Li, Yu & Zhao, Tianyi, 2024. "Grey-box model-based demand side management for rooftop PV and air conditioning systems in public buildings using PSO algorithm," Energy, Elsevier, vol. 296(C).
    14. Cui, Xin & Yan, Weichao & Liu, Yilin & Zhao, Min & Jin, Liwen, 2020. "Performance analysis of a hollow fiber membrane-based heat and mass exchanger for evaporative cooling," Applied Energy, Elsevier, vol. 271(C).
    15. Yang, Shaohua & Lao, Keng-Weng & Hui, Hongxun & Chen, Yulin, 2023. "A robustness-enhanced frequency regulation scheme for power system against multiple cyber and physical emergency events," Applied Energy, Elsevier, vol. 350(C).
    16. Ghiaus, Christian, 2014. "Linear algebra solution to psychometric analysis of air-conditioning systems," Energy, Elsevier, vol. 74(C), pages 555-566.
    17. Zhang, Lun & Song, Xia & Zhang, Xiaosong, 2019. "Theoretical analysis of exergy destruction and exergy flow in direct contact process between humid air and water/liquid desiccant solution," Energy, Elsevier, vol. 187(C).
    18. Yang, Zili & Zhang, Kaisheng & Lian, Zhiwei & Zhang, Huibo, 2016. "Sensitivity and stability analysis on the performance of ultrasonic atomization liquid desiccant dehumidification system," Energy, Elsevier, vol. 112(C), pages 1169-1183.
    19. Yifei Lv & Jun Lu & Yongcai Li & Ling Xie & Lulu Yang & Linlin Yuan, 2020. "Comparative Study of the Heat and Mass Transfer Characteristics between Counter-Flow and Cross-Flow Heat Source Towers," Energies, MDPI, vol. 13(11), pages 1-29, May.
    20. Ma, Su-Sheng & Tseng, Ching-Yi & Jian, You-Ren & Yang, Tai-Her & Chen, Sih-Li, 2018. "Utilization of waste heat for energy conservation in domestic dryers," Energy, Elsevier, vol. 162(C), pages 185-199.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5534-:d:1424794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.