IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v296y2024ics0360544224008247.html
   My bibliography  Save this article

Grey-box model-based demand side management for rooftop PV and air conditioning systems in public buildings using PSO algorithm

Author

Listed:
  • Sun, Yue
  • Luo, Zhiwen
  • Li, Yu
  • Zhao, Tianyi

Abstract

As the major power consumer in buildings, Heating, ventilation and air conditioning (HVAC) systems can significantly contribute to the economical operation of the power system during the peak periods in summer or winter, by flexibly responding to the grid demands. Indoor air temperature set-point resetting is a typical passive demand response (DR) control strategy that have potentials to be widely implemented by inverter air conditioners in residential buildings. However, in the existing small and medium-size public buildings, the compressor motor of HVAC systems mostly does not allow for stepless speed changes. This means that the indoor temperature set-point resetting strategy may results in frequent on/off switching of the chiller plant, leading to a compromised lifespan. Although rooftop photovoltaic systems (PVs) are expected to be widely adopted in new buildings, their potential for peak load shaving or valley load filling has received limited investigation. This study proposes a grey-box model-based demand side management (DSM) method for variable air volume systems (VAVs) and rooftop PVs in public buildings. The DSM method utilizes the particle swarm optimization (PSO) algorithm to determine optimal indoor air temperature and/or evaporator outlet water temperature set-point schedules for the VAVs, as well as optimal charging/discharging schedules for the storage battery of rooftop PVs. This approach aims to reduce the peak power demands of the integrated system without causing severe thermal discomfort, increasing chiller mechanical costs (refers to frequent on/off switching of the chiller plant in this paper), or overcharging/over-discharging of storage batteries. The results of case studies demonstrate that the strategy of co-resetting indoor air temperature – evaporator outlet water temperature set-points outperforms the indoor air temperature set-point resetting strategy in terms of both peak power demands reduction and mechanical cost saving when applied to the VAVs in low performance buildings. In comparison, for the VAVs installed in normal buildings, both the strategies yield significant decreases in peak power demands and mechanical cost by fully utilizing the thermal capacity of the building internal thermal mass. Furthermore, by implementing the DSM method for rooftop PVs, the integrated system can achieve zero or near-zero net power demands during the DR periods. The proposed DSM method can also be utilized in valley load filling programs to facilitate the accommodation of renewable energy.

Suggested Citation

  • Sun, Yue & Luo, Zhiwen & Li, Yu & Zhao, Tianyi, 2024. "Grey-box model-based demand side management for rooftop PV and air conditioning systems in public buildings using PSO algorithm," Energy, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224008247
    DOI: 10.1016/j.energy.2024.131052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224008247
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Debanjan, Mukherjee & Karuna, Kalita, 2022. "An Overview of Renewable Energy Scenario in India and its Impact on Grid Inertia and Frequency Response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Xie, Kang & Hui, Hongxun & Ding, Yi & Song, Yonghua & Ye, Chengjin & Zheng, Wandong & Ye, Shuiquan, 2022. "Modeling and control of central air conditionings for providing regulation services for power systems," Applied Energy, Elsevier, vol. 315(C).
    3. Xiong, Chengyan & Meng, Qinglong & Wei, Ying'an & Luo, Huilong & Lei, Yu & Liu, Jiao & Yan, Xiuying, 2023. "A demand response method for an active thermal energy storage air-conditioning system using improved transactive control: On-site experiments," Applied Energy, Elsevier, vol. 339(C).
    4. Tang, Rui & Wang, Shengwei, 2019. "Model predictive control for thermal energy storage and thermal comfort optimization of building demand response in smart grids," Applied Energy, Elsevier, vol. 242(C), pages 873-882.
    5. Naderi, Shayan & Heslop, Simon & Chen, Dong & Watts, Scott & MacGill, Iain & Pignatta, Gloria & Sproul, Alistair, 2023. "Clustering based analysis of residential duck curve mitigation through solar pre-cooling: A case study of Australian housing stock," Renewable Energy, Elsevier, vol. 216(C).
    6. Romaní, Joaquim & Belusko, Martin & Alemu, Alemu & Cabeza, Luisa F. & de Gracia, Alvaro & Bruno, Frank, 2018. "Optimization of deterministic controls for a cooling radiant wall coupled to a PV array," Applied Energy, Elsevier, vol. 229(C), pages 1103-1110.
    7. Chen, Yongbao & Xu, Peng & Chen, Zhe & Wang, Hongxin & Sha, Huajing & Ji, Ying & Zhang, Yongming & Dou, Qiang & Wang, Sheng, 2020. "Experimental investigation of demand response potential of buildings: Combined passive thermal mass and active storage," Applied Energy, Elsevier, vol. 280(C).
    8. Kohlhepp, Peter & Harb, Hassan & Wolisz, Henryk & Waczowicz, Simon & Müller, Dirk & Hagenmeyer, Veit, 2019. "Large-scale grid integration of residential thermal energy storages as demand-side flexibility resource: A review of international field studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 527-547.
    9. Li, Zhihao & Yang, Lun & Xu, Yinliang, 2023. "A dynamics-constrained method for distributed frequency regulation in low-inertia power systems," Applied Energy, Elsevier, vol. 344(C).
    10. Lv, Zhihan & Cheng, Chen & Lv, Haibin, 2023. "Digital twins for secure thermal energy storage in building," Applied Energy, Elsevier, vol. 338(C).
    11. Romaní, Joaquim & Belusko, Martin & Alemu, Alemu & Cabeza, Luisa F. & de Gracia, Alvaro & Bruno, Frank, 2018. "Control concepts of a radiant wall working as thermal energy storage for peak load shifting of a heat pump coupled to a PV array," Renewable Energy, Elsevier, vol. 118(C), pages 489-501.
    12. Wang, Huilong & Wang, Shengwei, 2021. "A hierarchical optimal control strategy for continuous demand response of building HVAC systems to provide frequency regulation service to smart power grids," Energy, Elsevier, vol. 230(C).
    13. Qi, Ye & Dong, Wenjuan & Dong, Changgui & Huang, Caiwei, 2019. "Understanding institutional barriers for wind curtailment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 476-486.
    14. Tang, Rui & Wang, Shengwei & Shan, Kui & Cheung, Howard, 2018. "Optimal control strategy of central air-conditioning systems of buildings at morning start period for enhanced energy efficiency and peak demand limiting," Energy, Elsevier, vol. 151(C), pages 771-781.
    15. Sezer, Nurettin & Yoonus, Hamad & Zhan, Dongxue & Wang, Liangzhu (Leon) & Hassan, Ibrahim Galal & Rahman, Mohammad Azizur, 2023. "Urban microclimate and building energy models: A review of the latest progress in coupling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    16. Li, Yanfei & O'Neill, Zheng & Zhang, Liang & Chen, Jianli & Im, Piljae & DeGraw, Jason, 2021. "Grey-box modeling and application for building energy simulations - A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    17. Ayompe, L.M. & Duffy, A. & McCormack, S.J. & Conlon, M., 2010. "Validated real-time energy models for small-scale grid-connected PV-systems," Energy, Elsevier, vol. 35(10), pages 4086-4091.
    18. Li, Xiwang & Malkawi, Ali, 2016. "Multi-objective optimization for thermal mass model predictive control in small and medium size commercial buildings under summer weather conditions," Energy, Elsevier, vol. 112(C), pages 1194-1206.
    19. Tabares-Velasco, Paulo Cesar & Speake, Andrew & Harris, Maxwell & Newman, Alexandra & Vincent, Tyrone & Lanahan, Michael, 2019. "A modeling framework for optimization-based control of a residential building thermostat for time-of-use pricing," Applied Energy, Elsevier, vol. 242(C), pages 1346-1357.
    20. Meng, B. & Loonen, R.C.G.M. & Hensen, J.L.M., 2022. "Performance variability and implications for yield prediction of rooftop PV systems – Analysis of 246 identical systems," Applied Energy, Elsevier, vol. 322(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Ruoyu & Liu, Xiaochen & Liu, Xiaohua & Zhang, Tao, 2024. "Quantifying the energy flexibility potential of a centralized air-conditioning system: A field test study of hub airports," Energy, Elsevier, vol. 298(C).
    2. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Wang, Qiaochu & Ding, Yan & Kong, Xiangfei & Tian, Zhe & Xu, Linrui & He, Qing, 2022. "Load pattern recognition based optimization method for energy flexibility in office buildings," Energy, Elsevier, vol. 254(PC).
    4. Simon Heslop & Baran Yildiz & Mike Roberts & Dong Chen & Tim Lau & Shayan Naderi & Anna Bruce & Iain MacGill & Renate Egan, 2022. "A Novel Temperature-Independent Model for Estimating the Cooling Energy in Residential Homes for Pre-Cooling and Solar Pre-Cooling," Energies, MDPI, vol. 15(23), pages 1-18, December.
    5. da Fonseca, André L.A. & Chvatal, Karin M.S. & Fernandes, Ricardo A.S., 2021. "Thermal comfort maintenance in demand response programs: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Tang, Hong & Wang, Shengwei, 2023. "Life-cycle economic analysis of thermal energy storage, new and second-life batteries in buildings for providing multiple flexibility services in electricity markets," Energy, Elsevier, vol. 264(C).
    7. Chen, Yongbao & Xu, Peng & Chen, Zhe & Wang, Hongxin & Sha, Huajing & Ji, Ying & Zhang, Yongming & Dou, Qiang & Wang, Sheng, 2020. "Experimental investigation of demand response potential of buildings: Combined passive thermal mass and active storage," Applied Energy, Elsevier, vol. 280(C).
    8. Kathirgamanathan, Anjukan & De Rosa, Mattia & Mangina, Eleni & Finn, Donal P., 2021. "Data-driven predictive control for unlocking building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Cui, Xueyuan & Liu, Shu & Ruan, Guangchun & Wang, Yi, 2024. "Data-driven aggregation of thermal dynamics within building virtual power plants," Applied Energy, Elsevier, vol. 353(PB).
    10. Tang, Rui & Wang, Shengwei & Li, Hangxin, 2019. "Game theory based interactive demand side management responding to dynamic pricing in price-based demand response of smart grids," Applied Energy, Elsevier, vol. 250(C), pages 118-130.
    11. Wang, Junke & Yik Tang, Choon & Song, Li, 2022. "Analysis of precooling optimization for residential buildings," Applied Energy, Elsevier, vol. 323(C).
    12. Guo, Jiwei & Dong, Jiankai & Wang, Hongjue & Wang, Yuan & Zou, Bin & Jiang, Yiqiang, 2022. "Study on the demand response potential of an actively ventilated building: Parametric and scenario analysis," Energy, Elsevier, vol. 238(PC).
    13. Yang, Yang & Chen, Sarula, 2022. "Thermal insulation solutions for opaque envelope of low-energy buildings: A systematic review of methods and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Giovanni Bianco & Stefano Bracco & Federico Delfino & Lorenzo Gambelli & Michela Robba & Mansueto Rossi, 2020. "A Building Energy Management System Based on an Equivalent Electric Circuit Model," Energies, MDPI, vol. 13(7), pages 1-23, April.
    15. Wang, Chuyao & Ji, Jie & Yang, Hongxing, 2024. "Day-ahead schedule optimization of household appliances for demand flexibility: Case study on PV/T powered buildings," Energy, Elsevier, vol. 289(C).
    16. Fu, Yangyang & O'Neill, Zheng & Wen, Jin & Pertzborn, Amanda & Bushby, Steven T., 2022. "Utilizing commercial heating, ventilating, and air conditioning systems to provide grid services: A review," Applied Energy, Elsevier, vol. 307(C).
    17. Damianakis, Nikolaos & Mouli, Gautham Ram Chandra & Bauer, Pavol & Yu, Yunhe, 2023. "Assessing the grid impact of Electric Vehicles, Heat Pumps & PV generation in Dutch LV distribution grids," Applied Energy, Elsevier, vol. 352(C).
    18. Shan, Kui & Wang, Shengwei & Zhuang, Chaoqun, 2021. "Controlling a large constant speed centrifugal chiller to provide grid frequency regulation: A validation based on onsite tests," Applied Energy, Elsevier, vol. 300(C).
    19. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    20. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224008247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.