IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2016i1p26-d86250.html
   My bibliography  Save this article

Experimental and Numerical Study of the Radiant Induction-Unit and the Induction Radiant Air-Conditioning System

Author

Listed:
  • Qiang Si

    (Department of Refrigeration and Built Environment, School of Energy and Environment, Southeast University, Nanjing 210009, China)

  • Xiaosong Zhang

    (Department of Refrigeration and Built Environment, School of Energy and Environment, Southeast University, Nanjing 210009, China)

Abstract

In this paper we proposed the novel air-conditioning system which combined induction ventilation and radiant air-conditioning. The indoor terminal device is the radiant induction-unit (RIDU). The RIDU is the induction unit combined with the pore radiant panel on which the copper pipes with rigid aluminum diffusion fins are installed. The two-stage evaporator chiller with the non-azeotropic mixture refrigerant is utilized in the system to reduce the initial investment in equipment. With the performance test and the steady state heat transfer model based on the theory of radiative heat transfer, the relationship between the induction ratio of the RIDU and the characteristic of the air supply was studied. Based on this, it is verified that the RIDU has a lower dew-point temperature and better anti-condensation performance than a traditional plate-type radiant panel. The characteristics of the radiation and convection heat transfer of the RIDU were studied. The total heat exchange of the RIDU can be 16.5% greater than that of the traditional plate-type radiant terminal.

Suggested Citation

  • Qiang Si & Xiaosong Zhang, 2016. "Experimental and Numerical Study of the Radiant Induction-Unit and the Induction Radiant Air-Conditioning System," Energies, MDPI, vol. 10(1), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:10:y:2016:i:1:p:26-:d:86250
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/1/26/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/1/26/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Can & Cai, Wenjian & Giridharan, Karunagaran & Wang, Youyi, 2014. "A hybrid dynamic modeling of active chilled beam terminal unit," Applied Energy, Elsevier, vol. 128(C), pages 133-143.
    2. Yang, C.M. & Chen, C.C. & Chen, S.L., 2013. "Energy-efficient air conditioning system with combination of radiant cooling and periodic total heat exchanger," Energy, Elsevier, vol. 59(C), pages 467-477.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Chih-Hao & Hsu, Chien-Yeh & Chen, Chih-Chieh & Chiang, Yuan-Ching & Chen, Sih-Li, 2016. "Silica gel/polymer composite desiccant wheel combined with heat pump for air-conditioning systems," Energy, Elsevier, vol. 94(C), pages 87-99.
    2. Wang, Xinli & Cai, Wenjian & Yin, Xiaohong, 2017. "A global optimized operation strategy for energy savings in liquid desiccant air conditioning using self-adaptive differential evolutionary algorithm," Applied Energy, Elsevier, vol. 187(C), pages 410-423.
    3. Yu, Yuebin & Niu, Fuxin & Guo, Heinz-Axel & Woradechjumroen, Denchai, 2016. "A thermo-activated wall for load reduction and supplementary cooling with free to low-cost thermal water," Energy, Elsevier, vol. 99(C), pages 250-265.
    4. Chiang, Yuan-Ching & Chen, Chih-Hao & Chiang, Yi-Chin & Chen, Sih-Li, 2016. "Circulating inclined fluidized beds with application for desiccant dehumidification systems," Applied Energy, Elsevier, vol. 175(C), pages 199-211.
    5. Liang, Jyun-De & Tsai, Lu-Kuan & Chai, Shaowei & Zhao, Yao & Chiang, Yuan-Ching & Dai, Yanjun & Chen, Sih-Li, 2023. "Experimental investigation and analysis of alumina/polymer/alginate composite desiccant materials," Energy, Elsevier, vol. 280(C).
    6. Ibrahim, Mohamad & Wurtz, Etienne & Biwole, Pascal Henry & Achard, Patrick, 2014. "Transferring the south solar energy to the north facade through embedded water pipes," Energy, Elsevier, vol. 78(C), pages 834-845.
    7. Wu, Bingjie & Cai, Wenjian & Chen, Haoran, 2021. "A model-based multi-objective optimization of energy consumption and thermal comfort for active chilled beam systems," Applied Energy, Elsevier, vol. 287(C).
    8. Yani Bao & Wai Ling Lee & Jie Jia, 2018. "Exergy Analyses and Modelling of a Novel Extra-Low Temperature Dedicated Outdoor Air System," Energies, MDPI, vol. 11(5), pages 1-25, May.
    9. Sensen Deng & Dong Wang & Kangkang Zhang & Mengxue Li & Yuehong Lu, 2024. "Analysis of the Energy-Saving Effect of a Novel Central Air-Conditioning System with an Internal Heat Exchanger in Summer," Sustainability, MDPI, vol. 16(13), pages 1-20, June.
    10. Ghiaus, Christian, 2014. "Linear algebra solution to psychometric analysis of air-conditioning systems," Energy, Elsevier, vol. 74(C), pages 555-566.
    11. Yang, Zili & Zhang, Kaisheng & Lian, Zhiwei & Zhang, Huibo, 2016. "Sensitivity and stability analysis on the performance of ultrasonic atomization liquid desiccant dehumidification system," Energy, Elsevier, vol. 112(C), pages 1169-1183.
    12. Ou, Xianhua & Cai, Wenjian & He, Xiongxiong & Zhai, Deqing, 2018. "Experimental investigations on heat and mass transfer performances of a liquid desiccant cooling and dehumidification system," Applied Energy, Elsevier, vol. 220(C), pages 164-175.
    13. Ma, Su-Sheng & Tseng, Ching-Yi & Jian, You-Ren & Yang, Tai-Her & Chen, Sih-Li, 2018. "Utilization of waste heat for energy conservation in domestic dryers," Energy, Elsevier, vol. 162(C), pages 185-199.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2016:i:1:p:26-:d:86250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.