IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v330y2023ipas0306261922015616.html
   My bibliography  Save this article

An adaptive decentralized regulation strategy for the cluster with massive inverter air conditionings

Author

Listed:
  • Dong, Lianxin
  • Wu, Qing
  • Hong, Juhua
  • Wang, Zhihua
  • Fan, Shuai
  • He, Guangyu

Abstract

To deal with the power fluctuation caused by renewable energy integration and load growth, it has been a general recognition to provide regulation services for local power system or main grid by flexible loads. There is a certain range of adaption to temperature for users and thermal inertias for building components, making it possible for air conditioning (AC) loads to participate in demand response (DR). Large cluster of ACs offers a resource akin to that of a distributed energy storage system, which is also an important regulation module of virtual power plant (VPP). Inverter air conditioning (IAC) is gradually occupying the market proportion owing to comfort and power savings. It has become a key technology in the new power system on how to coordinate massive IAC resources with heterogeneous parameters and status to output reliable load regulation services. To this end, this paper proposes a consensus control strategy for the IACs cluster based on lightweight decentralized architecture. The task is distributed fairly while ensuring the occupants’ comfort. The target load curve can be accurately tracked with high adaptability and robustness. The interactive parameters are generated from the bottom up based on individuals’ response ability, which facilitates rapid convergence. Together with the intrinsic adaptability and robustness, the hosting mechanism for the coordinator is designed to guarantee high fault-tolerance, and therefore plug-and-play can be satisfied. Besides, dimensionality reduction and locality for the interaction data ensure a higher level of privacy protection. The advantages are illustrated in case studies and compared with other approaches. To the best of our knowledge, the proposed method has the overwhelming convergence performance over the present literatures. These characteristics indicate a sufficient basis for its application in the variable conditions with massive users and can be extended to more scenarios using consensus control.

Suggested Citation

  • Dong, Lianxin & Wu, Qing & Hong, Juhua & Wang, Zhihua & Fan, Shuai & He, Guangyu, 2023. "An adaptive decentralized regulation strategy for the cluster with massive inverter air conditionings," Applied Energy, Elsevier, vol. 330(PA).
  • Handle: RePEc:eee:appene:v:330:y:2023:i:pa:s0306261922015616
    DOI: 10.1016/j.apenergy.2022.120304
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922015616
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120304?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    2. Li, Wenzhuo & Wang, Shengwei & Koo, Choongwan, 2021. "A real-time optimal control strategy for multi-zone VAV air-conditioning systems adopting a multi-agent based distributed optimization method," Applied Energy, Elsevier, vol. 287(C).
    3. Zhou, Huan & Fan, Shuai & Wu, Qing & Dong, Lianxin & Li, Zuyi & He, Guangyu, 2021. "Stimulus-response control strategy based on autonomous decentralized system theory for exploitation of flexibility by virtual power plant," Applied Energy, Elsevier, vol. 285(C).
    4. Utama, Christian & Troitzsch, Sebastian & Thakur, Jagruti, 2021. "Demand-side flexibility and demand-side bidding for flexible loads in air-conditioned buildings," Applied Energy, Elsevier, vol. 285(C).
    5. Xie, Kang & Hui, Hongxun & Ding, Yi & Song, Yonghua & Ye, Chengjin & Zheng, Wandong & Ye, Shuiquan, 2022. "Modeling and control of central air conditionings for providing regulation services for power systems," Applied Energy, Elsevier, vol. 315(C).
    6. Kong, Meng & Dong, Bing & Zhang, Rongpeng & O'Neill, Zheng, 2022. "HVAC energy savings, thermal comfort and air quality for occupant-centric control through a side-by-side experimental study," Applied Energy, Elsevier, vol. 306(PA).
    7. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    8. Fan, Shuai & Liu, Jiang & Wu, Qing & Cui, Mingjian & Zhou, Huan & He, Guangyu, 2020. "Optimal coordination of virtual power plant with photovoltaics and electric vehicles: A temporally coupled distributed online algorithm," Applied Energy, Elsevier, vol. 277(C).
    9. Wang, D. & Parkinson, S. & Miao, W. & Jia, H. & Crawford, C. & Djilali, N., 2012. "Online voltage security assessment considering comfort-constrained demand response control of distributed heat pump systems," Applied Energy, Elsevier, vol. 96(C), pages 104-114.
    10. Dong, Lianxin & Fan, Shuai & Wang, Zhihua & Xiao, Jucheng & Zhou, Huan & Li, Zuyi & He, Guangyu, 2021. "An adaptive decentralized economic dispatch method for virtual power plant," Applied Energy, Elsevier, vol. 300(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Yan & Fan, Shuai & Shen, Yu & Xiao, Jucheng & He, Guangyu & Li, Zuyi, 2023. "Transmission and distribution network-constrained large-scale demand response based on locational customer directrix load for accommodating renewable energy," Applied Energy, Elsevier, vol. 350(C).
    2. Etedadi, Farshad & Kelouwani, Sousso & Agbossou, Kodjo & Henao, Nilson & Laurencelle, François, 2023. "Consensus and sharing based distributed coordination of home energy management systems with demand response enabled baseboard heaters," Applied Energy, Elsevier, vol. 336(C).
    3. Zhou, Te & Chen, Honghu & Zhang, Ning & Han, Yang & Zhou, Siyu & Li, Zhi & Zhou, Meng, 2024. "An analogue on/off state-switching control method suitable for inverter-based air conditioner load cluster participating in demand response," Applied Energy, Elsevier, vol. 363(C).
    4. Zhang, Jiarui & Mu, Yunfei & Wu, Zhijun & Jia, Hongjie & Jin, Xiaolong & Qi, Yan, 2024. "Two-stage affine assessment method for flexible ramping capacity: An inverter heat pump virtual power plant case," Applied Energy, Elsevier, vol. 365(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ju, Liwei & Yin, Zhe & Lu, Xiaolong & Yang, Shenbo & Li, Peng & Rao, Rao & Tan, Zhongfu, 2022. "A Tri-dimensional Equilibrium-based stochastic optimal dispatching model for a novel virtual power plant incorporating carbon Capture, Power-to-Gas and electric vehicle aggregator," Applied Energy, Elsevier, vol. 324(C).
    2. Dong, Lianxin & Fan, Shuai & Wang, Zhihua & Xiao, Jucheng & Zhou, Huan & Li, Zuyi & He, Guangyu, 2021. "An adaptive decentralized economic dispatch method for virtual power plant," Applied Energy, Elsevier, vol. 300(C).
    3. Dong, Zihang & Zhang, Xi & Li, Yijun & Strbac, Goran, 2023. "Values of coordinated residential space heating in demand response provision," Applied Energy, Elsevier, vol. 330(PB).
    4. Ju, Liwei & Yin, Zhe & Zhou, Qingqing & Li, Qiaochu & Wang, Peng & Tian, Wenxu & Li, Peng & Tan, Zhongfu, 2022. "Nearly-zero carbon optimal operation model and benefit allocation strategy for a novel virtual power plant using carbon capture, power-to-gas, and waste incineration power in rural areas," Applied Energy, Elsevier, vol. 310(C).
    5. Wafa Nafkha-Tayari & Seifeddine Ben Elghali & Ehsan Heydarian-Forushani & Mohamed Benbouzid, 2022. "Virtual Power Plants Optimization Issue: A Comprehensive Review on Methods, Solutions, and Prospects," Energies, MDPI, vol. 15(10), pages 1-20, May.
    6. Guixing Yang & Haoran Liu & Weiqing Wang & Junru Chen & Shunbo Lei, 2023. "Distributed Optimal Coordination of a Virtual Power Plant with Residential Regenerative Electric Heating Systems," Energies, MDPI, vol. 16(11), pages 1-15, May.
    7. Esfahani, Moein & Alizadeh, Ali & Amjady, Nima & Kamwa, Innocent, 2024. "A distributed VPP-integrated co-optimization framework for energy scheduling, frequency regulation, and voltage support using data-driven distributionally robust optimization with Wasserstein metric," Applied Energy, Elsevier, vol. 361(C).
    8. Li, Li & Dong, Mi & Song, Dongran & Yang, Jian & Wang, Qibing, 2022. "Distributed and real-time economic dispatch strategy for an islanded microgrid with fair participation of thermostatically controlled loads," Energy, Elsevier, vol. 261(PB).
    9. Mei, Shufan & Tan, Qinliang & Liu, Yuan & Trivedi, Anupam & Srinivasan, Dipti, 2023. "Optimal bidding strategy for virtual power plant participating in combined electricity and ancillary services market considering dynamic demand response price and integrated consumption satisfaction," Energy, Elsevier, vol. 284(C).
    10. Guanjing Lin & Armando Casillas & Maggie Sheng & Jessica Granderson, 2023. "Performance Evaluation of an Occupancy-Based HVAC Control System in an Office Building," Energies, MDPI, vol. 16(20), pages 1-21, October.
    11. Mohammad Mohammadi Roozbehani & Ehsan Heydarian-Forushani & Saeed Hasanzadeh & Seifeddine Ben Elghali, 2022. "Virtual Power Plant Operational Strategies: Models, Markets, Optimization, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    12. Li, Chunxiao & Cui, Can & Li, Ming, 2023. "A proactive 2-stage indoor CO2-based demand-controlled ventilation method considering control performance and energy efficiency," Applied Energy, Elsevier, vol. 329(C).
    13. Deng, Zhipeng & Wang, Xuezheng & Dong, Bing, 2023. "Quantum computing for future real-time building HVAC controls," Applied Energy, Elsevier, vol. 334(C).
    14. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    15. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    16. Hyo-Jun Kim & Young-Hum Cho, 2021. "Optimal Control Method of Variable Air Volume Terminal Unit System," Energies, MDPI, vol. 14(22), pages 1-15, November.
    17. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2020. "Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system," Applied Energy, Elsevier, vol. 257(C).
    18. Evelina Di Corso & Tania Cerquitelli & Daniele Apiletti, 2018. "METATECH: METeorological Data Analysis for Thermal Energy CHaracterization by Means of Self-Learning Transparent Models," Energies, MDPI, vol. 11(6), pages 1-24, May.
    19. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
    20. Zekai Xu & Jinghan He & Zhao Liu & Zhiyi Zhao, 2023. "Collaborative Optimization of Transmission and Distribution Considering Energy Storage Systems on Both Sides of Transmission and Distribution," Energies, MDPI, vol. 16(13), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:330:y:2023:i:pa:s0306261922015616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.