IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6355-d902974.html
   My bibliography  Save this article

Fault Detection and Identification of Furnace Negative Pressure System with CVA and GA-XGBoost

Author

Listed:
  • Dan Ling

    (School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China)

  • Chaosong Li

    (School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China)

  • Yan Wang

    (School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China)

  • Pengye Zhang

    (School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China)

Abstract

The boiler is an essential energy conversion facility in a thermal power plant. One small malfunction or abnormal event will bring huge economic loss and casualties. Accurate and timely detection of abnormal events in boilers is crucial for the safe and economical operation of complex thermal power plants. Data-driven fault diagnosis methods based on statistical process monitoring technology have prevailed in thermal power plants, whereas the false alarm rates of those methods are relatively high. To work around this, this paper proposes a novel fault detection and identification method for furnace negative pressure system based on canonical variable analysis (CVA) and eXtreme Gradient Boosting improved by genetic algorithms (GA-XGBoost). First, CVA is used to reduce the data redundancy and construct the canonical residuals to measure the prediction ability of the state variables. Then, the fault detection model based on GA-XGBoost is schemed using the constructed canonical residual variables. Specially, GA is introduced to determine the optimal hyperparameters of XGBoost and speed up the convergence. Next, this paper presents a novel fault identification method based on the reconstructed contribution statistics, considering the contribution of state space, residual space and canonical residual space. Besides, the proposed statistics renders different weights to the state vectors, the residual vectors and the canonical residual vectors to improve the sensitivity of faulty variables. Finally, the real industrial data from a boiler furnace negative pressure system of a certain thermal power plant is used to demonstrate the ability of the proposed method. The result demonstrates that this method is accurate and efficient to detect and identify the faults of a true boiler.

Suggested Citation

  • Dan Ling & Chaosong Li & Yan Wang & Pengye Zhang, 2022. "Fault Detection and Identification of Furnace Negative Pressure System with CVA and GA-XGBoost," Energies, MDPI, vol. 15(17), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6355-:d:902974
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6355/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6355/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Kunjie & While, Lyndon & Reynolds, Mark & Wang, Xin & Liang, J.J. & Zhao, Liang & Wang, Zhenlei, 2018. "Multiobjective optimization of ethylene cracking furnace system using self-adaptive multiobjective teaching-learning-based optimization," Energy, Elsevier, vol. 148(C), pages 469-481.
    2. Faisal Khan & Mahmoud Haddara & Mohamed Khalifa, 2012. "Risk-Based Inspection and Maintenance (RBIM) of Power Plants," Springer Series in Reliability Engineering, in: Gilberto Francisco Martha de Souza (ed.), Thermal Power Plant Performance Analysis, edition 127, pages 249-279, Springer.
    3. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    4. Jungwon Yu & Jaeyel Jang & Jaeyeong Yoo & June Ho Park & Sungshin Kim, 2018. "A Fault Isolation Method via Classification and Regression Tree-Based Variable Ranking for Drum-Type Steam Boiler in Thermal Power Plant," Energies, MDPI, vol. 11(5), pages 1-19, May.
    5. Wang, Zhenya & Yao, Ligang & Cai, Yongwu & Zhang, Jun, 2020. "Mahalanobis semi-supervised mapping and beetle antennae search based support vector machine for wind turbine rolling bearings fault diagnosis," Renewable Energy, Elsevier, vol. 155(C), pages 1312-1327.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Guolong & Li, Yanjun & Fang, Chengyue & Su, Jian & Wang, Haotong & Sun, Shengdi & Zhang, Guolei & Shi, Jianxin, 2023. "Research on fault diagnosis of supercharged boiler with limited data based on few-shot learning," Energy, Elsevier, vol. 281(C).
    2. Jie Liu & Han Cheng & Qingkuan Liu & Hailong Wang & Jianqing Bu, 2023. "Research on the Damage Diagnosis Model Algorithm of Cable-Stayed Bridges Based on Data Mining," Sustainability, MDPI, vol. 15(3), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Zeng & Tian Xia & Salah K. Elsayed & Mahrous Ahmed & Mostafa Rezaei & Kittisak Jermsittiparsert & Udaya Dampage & Mohamed A. Mohamed, 2021. "A Novel Machine Learning-Based Framework for Optimal and Secure Operation of Static VAR Compensators in EAFs," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    2. Masih Hosseinzadeh & Hossein Mashhadimoslem & Farid Maleki & Ali Elkamel, 2022. "Prediction of Solid Conversion Process in Direct Reduction Iron Oxide Using Machine Learning," Energies, MDPI, vol. 15(24), pages 1-25, December.
    3. Qin, Meng & Hu, Wei & Qi, Xinzhou & Chang, Tsangyao, 2024. "Do the benefits outweigh the disadvantages? Exploring the role of artificial intelligence in renewable energy," Energy Economics, Elsevier, vol. 131(C).
    4. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    5. Ding, Jiaqi & Zhao, Pu & Liu, Changjun & Wang, Xiaofang & Xie, Rong & Liu, Haitao, 2024. "From irregular to continuous: The deep Koopman model for time series forecasting of energy equipment," Applied Energy, Elsevier, vol. 364(C).
    6. Yacouba Telly & Xuezhi Liu & Tadagbe Roger Sylvanus Gbenou, 2023. "Investigating the Growth Effect of Carbon-Intensive Economic Activities on Economic Growth: Evidence from Angola," Energies, MDPI, vol. 16(8), pages 1-18, April.
    7. Mahdi Asadi & Iman Larki & Mohammad Mahdi Forootan & Rouhollah Ahmadi & Meisam Farajollahi, 2023. "Long-Term Scenario Analysis of Electricity Supply and Demand in Iran: Time Series Analysis, Renewable Electricity Development, Energy Efficiency and Conservation," Sustainability, MDPI, vol. 15(5), pages 1-24, March.
    8. Asya İşçen & Kerem Öznacar & K. M. Murat Tunç & M. Erdem Günay, 2023. "Exploring the Critical Factors of Biomass Pyrolysis for Sustainable Fuel Production by Machine Learning," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
    9. Arthur H.A. Melani & Carlos A. Murad & Adherbal Caminada Netto & Gilberto F.M. Souza & Silvio I. Nabeta, 2019. "Maintenance Strategy Optimization of a Coal-Fired Power Plant Cooling Tower through Generalized Stochastic Petri Nets," Energies, MDPI, vol. 12(10), pages 1-28, May.
    10. Kong, Yun & Han, Qinkai & Chu, Fulei & Qin, Yechen & Dong, Mingming, 2023. "Spectral ensemble sparse representation classification approach for super-robust health diagnostics of wind turbine planetary gearbox," Renewable Energy, Elsevier, vol. 219(P1).
    11. Kong, Yun & Qin, Zhaoye & Wang, Tianyang & Han, Qinkai & Chu, Fulei, 2021. "An enhanced sparse representation-based intelligent recognition method for planet bearing fault diagnosis in wind turbines," Renewable Energy, Elsevier, vol. 173(C), pages 987-1004.
    12. Li, Na & Cui, Xiaoti & Zhu, Jimin & Zhou, Mengfan & Liso, Vincenzo & Cinti, Giovanni & Sahlin, Simon Lennart & Araya, Samuel Simon, 2023. "A review of reformed methanol-high temperature proton exchange membrane fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    13. Ma, Chenyang & Wang, Xianzhi & Li, Yongbo & Cai, Zhiqiang, 2024. "Broad zero-shot diagnosis for rotating machinery with untrained compound faults," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    14. Gong, Shixin & Shao, Cheng & Zhu, Li, 2021. "Energy efficiency enhancement of energy and materials for ethylene production based on two-stage coordinated optimization scheme," Energy, Elsevier, vol. 217(C).
    15. Arturo Y. Jaen-Cuellar & David A. Elvira-Ortiz & Roque A. Osornio-Rios & Jose A. Antonino-Daviu, 2022. "Advances in Fault Condition Monitoring for Solar Photovoltaic and Wind Turbine Energy Generation: A Review," Energies, MDPI, vol. 15(15), pages 1-36, July.
    16. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    17. Ana-Maria Moldovan & Mircea Ion Buzdugan, 2023. "Prediction of Faults Location and Type in Electrical Cables Using Artificial Neural Network," Sustainability, MDPI, vol. 15(7), pages 1-19, April.
    18. Khazaee, Meghdad & Derian, Pierre & Mouraud, Anthony, 2022. "A comprehensive study on Structural Health Monitoring (SHM) of wind turbine blades by instrumenting tower using machine learning methods," Renewable Energy, Elsevier, vol. 199(C), pages 1568-1579.
    19. Kasmuri, N.H. & Kamarudin, S.K. & Abdullah, S.R.S. & Hasan, H.A. & Som, A. Md, 2019. "Integrated advanced nonlinear neural network-simulink control system for production of bio-methanol from sugar cane bagasse via pyrolysis," Energy, Elsevier, vol. 168(C), pages 261-272.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6355-:d:902974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.