IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v61y2024i4d10.1007_s12597-024-00749-1.html
   My bibliography  Save this article

Artificial intelligent support model for multiple criteria decision in construction management

Author

Listed:
  • Pham Vu Hong Son

    (Ho Chi Minh City University of Technology (HCMUT), Vietnam National University (VNU-HCM))

  • Luu Ngoc Quynh Khoi

    (Ho Chi Minh City University of Technology (HCMUT), Vietnam National University (VNU-HCM))

Abstract

In this study, the factors impacting building projects in Vietnam are discussed. A hybrid model, entitled Slime Mould Algorithm Opposition Tournament Mutation, which integrates Opposition-based learning methods, Tournament Selection and Mutation & Crossover, is used to address these aspects. The hybridization of this model boosts discoverability, promotes convergence, and minimizes local optimization to address the issue of simultaneously optimizing time, cost, quality, and CO2 trade-off problem. The project’s operating procedures are designed to produce the best results possible. Large-scale projects data will be simple to process using the hybrid model, allowing the proposed model to reach its full potential and provide the ideal solution. In addition to evaluating the proposed model, the authors also suggests comparing its results with the benchmarks for other algorithms, including the Slime Mould Algorithm, the multiple-objective Particle Swarm Optimization and the multiple-objective Artificial Bee Colony, in order to confirm its efficacy and achievement. The findings of this study therefore demonstrate that project managers can utilize the developed hybridization model to resolve optimization issues of significant building elements.

Suggested Citation

  • Pham Vu Hong Son & Luu Ngoc Quynh Khoi, 2024. "Artificial intelligent support model for multiple criteria decision in construction management," OPSEARCH, Springer;Operational Research Society of India, vol. 61(4), pages 2218-2241, December.
  • Handle: RePEc:spr:opsear:v:61:y:2024:i:4:d:10.1007_s12597-024-00749-1
    DOI: 10.1007/s12597-024-00749-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-024-00749-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-024-00749-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yun & Heidari, Ali Asghar & Ye, Xiaojia & Liang, Guoxi & Chen, Huiling & He, Caitou, 2021. "Boosting slime mould algorithm for parameter identification of photovoltaic models," Energy, Elsevier, vol. 234(C).
    2. Wesemeyer, Maximilian & Kamp, Johannes & Schmitz, Tillman & Müller, Daniel & Lakes, Tobia, 2023. "Multi-objective spatial optimization to balance trade-offs between farmland bird diversity and potential agricultural net returns," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 345, pages 1-10.
    3. Moura de Figueiredo, Nelio & Cavalcante Blanco, Claudio José & Pinheiro Campos Filho, Lúcio Carlos & Amarante Mesquita, André Luiz, 2023. "MUWOS - Multiple use water optimization system for the power generation and navigation trade-offs analysis," Renewable Energy, Elsevier, vol. 203(C), pages 205-218.
    4. Shoyab Ali & Annapurna Bhargava & Akash Saxena & Pavan Kumar, 2023. "A Hybrid Marine Predator Sine Cosine Algorithm for Parameter Selection of Hybrid Active Power Filter," Mathematics, MDPI, vol. 11(3), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Navid Behmanesh-Fard & Hossein Yazdanjouei & Mohammad Shokouhifar & Frank Werner, 2023. "Mathematical Circuit Root Simplification Using an Ensemble Heuristic–Metaheuristic Algorithm," Mathematics, MDPI, vol. 11(6), pages 1-22, March.
    2. Muhyaddin Rawa & Abdullah Abusorrah & Yusuf Al-Turki & Martin Calasan & Mihailo Micev & Ziad M. Ali & Saad Mekhilef & Hussain Bassi & Hatem Sindi & Shady H. E. Abdel Aleem, 2022. "Estimation of Parameters of Different Equivalent Circuit Models of Solar Cells and Various Photovoltaic Modules Using Hybrid Variants of Honey Badger Algorithm and Artificial Gorilla Troops Optimizer," Mathematics, MDPI, vol. 10(7), pages 1-31, March.
    3. Slim Abid & Ali M. El-Rifaie & Mostafa Elshahed & Ahmed R. Ginidi & Abdullah M. Shaheen & Ghareeb Moustafa & Mohamed A. Tolba, 2023. "Development of Slime Mold Optimizer with Application for Tuning Cascaded PD-PI Controller to Enhance Frequency Stability in Power Systems," Mathematics, MDPI, vol. 11(8), pages 1-32, April.
    4. Fan, Yi & Wang, Pengjun & Heidari, Ali Asghar & Chen, Huiling & HamzaTurabieh, & Mafarja, Majdi, 2022. "Random reselection particle swarm optimization for optimal design of solar photovoltaic modules," Energy, Elsevier, vol. 239(PA).
    5. Choulli, Imade & Elyaqouti, Mustapha & Arjdal, El hanafi & Ben hmamou, Dris & Saadaoui, Driss & Lidaighbi, Souad & Elhammoudy, Abdelfattah & Abazine, Ismail, 2023. "Hybrid optimization based on the analytical approach and the particle swarm optimization algorithm (Ana-PSO) for the extraction of single and double diode models parameters," Energy, Elsevier, vol. 283(C).
    6. Xiaobing Yu & Xuejing Wu & Wenguan Luo, 2022. "Parameter Identification of Photovoltaic Models by Hybrid Adaptive JAYA Algorithm," Mathematics, MDPI, vol. 10(2), pages 1-28, January.
    7. Lihong Pan & Miyuan Shan & Linfeng Li, 2023. "Optimizing Perishable Product Supply Chain Network Using Hybrid Metaheuristic Algorithms," Sustainability, MDPI, vol. 15(13), pages 1-21, July.
    8. Jänicke, Clemens & Wesemeyer, Maximilian & Chiarella, Cristina & Lakes, Tobia & Levers, Christian & Meyfroidt, Patrick & Müller, Daniel & Pratzer, Marie & Rufin, Philippe, 2024. "Can we estimate farm size from field size? An empirical investigation of the field size to farm size relationship," Agricultural Systems, Elsevier, vol. 220(C).
    9. Shaheen, Abdullah M. & Ginidi, Ahmed R. & El-Sehiemy, Ragab A. & El-Fergany, Attia & Elsayed, Abdallah M., 2023. "Optimal parameters extraction of photovoltaic triple diode model using an enhanced artificial gorilla troops optimizer," Energy, Elsevier, vol. 283(C).
    10. Ramakanta Jena & Ritesh Dash & Kalvakurthi Jyotheeswara Reddy & Prasanta Kumar Parida & Chittathuru Dhanamjayulu & Sarat Chandra Swain & S. M. Muyeen, 2023. "Enhancing Efficiency of Grid-Connected Solar Photovoltaic System with Particle Swarm Optimization & Long Short-Term Memory Hybrid Technique," Sustainability, MDPI, vol. 15(11), pages 1-24, May.
    11. Martin Ćalasan & Mujahed Al-Dhaifallah & Ziad M. Ali & Shady H. E. Abdel Aleem, 2022. "Comparative Analysis of Different Iterative Methods for Solving Current–Voltage Characteristics of Double and Triple Diode Models of Solar Cells," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    12. Lan, Yang & Changshi, Liu, 2023. "Conductance is responsible for the power conversion efficiency of solar cell," Energy, Elsevier, vol. 278(PB).
    13. Yuanfei Wei & Zalinda Othman & Kauthar Mohd Daud & Shihong Yin & Qifang Luo & Yongquan Zhou, 2022. "Equilibrium Optimizer and Slime Mould Algorithm with Variable Neighborhood Search for Job Shop Scheduling Problem," Mathematics, MDPI, vol. 10(21), pages 1-20, November.
    14. Hong Miao & Zhongrui Qiu & Chengbi Zeng, 2022. "Multi-Strategy Improved Slime Mould Algorithm and its Application in Optimal Operation of Cascade Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3029-3048, July.
    15. Fang, Zhou & Liao, Shengli & Zhao, Hongye & Cheng, Chuntian & Liu, Benxi & Wang, Huan & Li, Shushan, 2024. "An MILP model based on a processing strategy of complex multisource constraints for the short-term peak shaving operation of large-scale cascaded hydropower plants," Renewable Energy, Elsevier, vol. 231(C).
    16. Pan, Jeng-Shyang & Zhang, Zhen & Chu, Shu-Chuan & Zhang, Si-Qi & Wu, Jimmy Ming-Tai, 2024. "A parallel compact Marine Predators Algorithm applied in time series prediction of Backpropagation neural network (BNN) and engineering optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 65-88.
    17. Karim El Moutaouakil & Abdellatif El Ouissari & Vasile Palade & Anas Charroud & Adrian Olaru & Hicham Baïzri & Saliha Chellak & Mouna Cheggour, 2023. "Multi-Objective Optimization for Controlling the Dynamics of the Diabetic Population," Mathematics, MDPI, vol. 11(13), pages 1-28, July.
    18. Ana-Maria Moldovan & Mircea Ion Buzdugan, 2023. "Prediction of Faults Location and Type in Electrical Cables Using Artificial Neural Network," Sustainability, MDPI, vol. 15(7), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:61:y:2024:i:4:d:10.1007_s12597-024-00749-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.