IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p14893-d1260237.html
   My bibliography  Save this article

A Review of Wireless Pavement System Based on the Inductive Power Transfer in Electric Vehicles

Author

Listed:
  • Bozhi

    (Hunan Engineering Research Center for Intelligent Operation and Maintenance of Elevators, Hunan Electrical College of Technology, Xiangtan 411101, China)

  • Mahmoud Mohamed

    (School of Engineering, Cardiff University, Cardiff CF24 3AA, UK)

  • Vahid Najafi Moghaddam Gilani

    (Faculty of Medicine and Health Sciences, Université de Sherbrooke, Longueuil, QC J4K 0A8, Canada)

  • Ayesha Amjad

    (Faculty of Organization and Management, Silesian University of Technology, 44-100 Gliwice, Poland
    Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), University of Coimbra, Polo II, 3030-788 Coimbra, Portugal)

  • Mohammed Sh. Majid

    (Computer Techniques Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil 51001, Iraq)

  • Khalid Yahya

    (Department of Electrical and Electronics Engineering, Nisantasi University, Istanbul 34467, Turkey)

  • Mohamed Salem

    (School of Electrical and Electronic Engineering, Universiti Sains Malaysia (USM), Nibong Tebal 14300, Penang, Malaysia)

Abstract

The proliferation of electric vehicles (EVs) hinges upon the availability of robust and efficient charging infrastructure, notably encompassing swift and convenient solutions. Among these, dynamic wireless charging systems have garnered substantial attention for their potential to revolutionize EV charging experiences. Inductive power transfer (IPT) systems, in particular, exhibit a promising avenue, enabling seamless wireless charging through integrated pavements for EVs. This review engages in an in-depth exploration of pertinent parameters that influence the inductivity and conductivity performance of pavements, alongside the assessment of potential damage inflicted by IPT pads. Moreover, the study delves into the realm of additive materials as a strategic approach to augment conductivity and pavement performance. In essence, the review consolidates a diverse array of studies that scrutinize IPT pad materials, coil dimensions, pavement characteristics (both static and dynamic), and adhesive properties. These studies collectively illuminate the intricate dynamics of power transfer to EVs while considering potential repercussions on pavement integrity. Furthermore, the review sheds light on the efficacy of various additive materials, including metal and nanocomposite additives with an SBS base, in amplifying both conductivity and pavement performance. The culmination of these findings underscores the pivotal role of geometry optimization for IPT pads and the strategic adaptation of aggregate and bitumen characteristics to unlock enhanced performance within wireless pavements.

Suggested Citation

  • Bozhi & Mahmoud Mohamed & Vahid Najafi Moghaddam Gilani & Ayesha Amjad & Mohammed Sh. Majid & Khalid Yahya & Mohamed Salem, 2023. "A Review of Wireless Pavement System Based on the Inductive Power Transfer in Electric Vehicles," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14893-:d:1260237
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/14893/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/14893/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Feng & Li, Yanjie & Zhou, Siqi & Chen, Yifang & Sun, Xuan & Deng, Yutong, 2022. "Wireless power transfer tuning model of electric vehicles with pavement materials as transmission media for energy conservation," Applied Energy, Elsevier, vol. 323(C).
    2. Hui Wang & Xun Zhang & Shengchuan Jiang, 2022. "A Laboratory and Field Universal Estimation Method for Tire–Pavement Interaction Noise (TPIN) Based on 3D Image Technology," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    3. Bi, Zicheng & Kan, Tianze & Mi, Chunting Chris & Zhang, Yiming & Zhao, Zhengming & Keoleian, Gregory A., 2016. "A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility," Applied Energy, Elsevier, vol. 179(C), pages 413-425.
    4. Wang, Zhichao & Wang, Qing & Jia, Chunxia & Bai, Jingru, 2022. "Thermal evolution of chemical structure and mechanism of oil sands bitumen," Energy, Elsevier, vol. 244(PB).
    5. Aree Wangsupphaphol & Surachai Chaitusaney & Mohamed Salem, 2023. "A Techno-Economic Assessment of a Second-Life Battery and Photovoltaics Hybrid Power Source for Sustainable Electric Vehicle Home Charging," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    6. Zhiyuan Luo & Hui Wang & Shenglin Li, 2022. "Prediction of International Roughness Index Based on Stacking Fusion Model," Sustainability, MDPI, vol. 14(12), pages 1-13, June.
    7. Mahyar Alinejad & Omid Rezaei & Reza Habibifar & Mahdi Azimian, 2022. "A Charge/Discharge Plan for Electric Vehicles in an Intelligent Parking Lot Considering Destructive Random Decisions, and V2G and V2V Energy Transfer Modes," Sustainability, MDPI, vol. 14(19), pages 1-22, October.
    8. Himadry Shekhar Das & Md Nurunnabi & Mohamed Salem & Shuhui Li & Mohammad Mominur Rahman, 2022. "Utilization of Electric Vehicle Grid Integration System for Power Grid Ancillary Services," Energies, MDPI, vol. 15(22), pages 1-15, November.
    9. Liu, Kai & Fu, Chaoliang & Wang, Hao & Wang, Fang & Xu, Peixin & Kan, Chaohao, 2020. "Exploring the energy-saving potential of electromagnetic induction pavement via magnetic concentrating technique," Energy, Elsevier, vol. 211(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pabba Ramesh & Pongiannan Rakkiya Goundar Komarasamy & Narayanamoorthi Rajamanickam & Yahya Z. Alharthi & Ali Elrashidi & Waleed Nureldeen, 2024. "A Comprehensive Review on Control Technique and Socio-Economic Analysis for Sustainable Dynamic Wireless Charging Applications," Sustainability, MDPI, vol. 16(15), pages 1-42, July.
    2. Yuvaraja Shanmugam & Narayanamoorthi Rajamanickam & Roobaea Alroobaea & Abdulkareem Afandi, 2024. "Driving towards Sustainability: Wireless Charging of Low-Speed Vehicles with PDM-Based Active Bridge Rectifiers," Sustainability, MDPI, vol. 16(9), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Le Trong Hieu & Ock Taeck Lim, 2023. "Effects of the Structure and Operating Parameters on the Performance of an Electric Scooter," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    3. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2023. "Electromagnetic Interference in Cardiac Implantable Electronic Devices Due to Dynamic Wireless Power Systems for Electric Vehicles," Energies, MDPI, vol. 16(9), pages 1-17, April.
    4. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    5. Stefan Helber & Justine Broihan & Young Jae Jang & Peter Hecker & Thomas Feuerle, 2018. "Location Planning for Dynamic Wireless Charging Systems for Electric Airport Passenger Buses," Energies, MDPI, vol. 11(2), pages 1-16, January.
    6. Niu, Songyan & Xu, Haiqi & Sun, Zhirui & Shao, Z.Y. & Jian, Linni, 2019. "The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: principles, standards and core technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Hyukjoon Lee & Dongjin Ji & Dong-Ho Cho, 2019. "Optimal Design of Wireless Charging Electric Bus System Based on Reinforcement Learning," Energies, MDPI, vol. 12(7), pages 1-20, March.
    8. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    9. Jianfeng Hong & Mingjie Guan & Zaifa Lin & Qiu Fang & Wei Wu & Wenxiang Chen, 2019. "Series-Series/Series Compensated Inductive Power Transmission System with Symmetrical Half-Bridge Resonant Converter: Design, Analysis, and Experimental Assessment," Energies, MDPI, vol. 12(12), pages 1-17, June.
    10. Li, Lantian & Wang, Zhenpo & Gao, Feng & Wang, Shuo & Deng, Junjun, 2020. "A family of compensation topologies for capacitive power transfer converters for wireless electric vehicle charger," Applied Energy, Elsevier, vol. 260(C).
    11. Niu, Songyan & Yu, Hang & Niu, Shuangxia & Jian, Linni, 2020. "Power loss analysis and thermal assessment on wireless electric vehicle charging technology: The over-temperature risk of ground assembly needs attention," Applied Energy, Elsevier, vol. 275(C).
    12. Han, Zhongliang & Xu, Nan & Chen, Hong & Huang, Yanjun & Zhao, Bin, 2018. "Energy-efficient control of electric vehicles based on linear quadratic regulator and phase plane analysis," Applied Energy, Elsevier, vol. 213(C), pages 639-657.
    13. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    14. Xiang Zhang & David Rey & S. Travis Waller & Nathan Chen, 2019. "Range-Constrained Traffic Assignment with Multi-Modal Recharge for Electric Vehicles," Networks and Spatial Economics, Springer, vol. 19(2), pages 633-668, June.
    15. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    16. Aditya Raj & Tarun Sharma & Sandeep Singh & Umesh Sharma & Prashant Sharma & Rajesh Singh & Shubham Sharma & Jatinder Kaur & Harshpreet Kaur & Bashir Salah & Syed Sajid Ullah & Soliman Alkhatib, 2023. "Building a Sustainable Future from Theory to Practice: A Comprehensive PRISMA-Guided Assessment of Compressed Stabilized Earth Blocks (CSEB) for Construction Applications," Sustainability, MDPI, vol. 15(12), pages 1-35, June.
    17. Gang Chen & Dawei Hu & Steven Chien & Lei Guo & Mingzheng Liu, 2020. "Optimizing Wireless Charging Locations for Battery Electric Bus Transit with a Genetic Algorithm," Sustainability, MDPI, vol. 12(21), pages 1-20, October.
    18. Massimo Ceraolo & Valentina Consolo & Mauro Di Monaco & Giovanni Lutzemberger & Antonino Musolino & Rocco Rizzo & Giuseppe Tomasso, 2021. "Design and Realization of an Inductive Power Transfer for Shuttles in Automated Warehouses," Energies, MDPI, vol. 14(18), pages 1-20, September.
    19. Wang, De'an & Zhang, Jiantao & Cui, Shumei & Bie, Zhi & Chen, Fuze & Zhu, Chunbo, 2024. "The state-of-the-arts of underwater wireless power transfer: A comprehensive review and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    20. Carlos Javier de las Heras-Rosas & Juan Herrera, 2019. "Towards Sustainable Mobility through a Change in Values. Evidence in 12 European Countries," Sustainability, MDPI, vol. 11(16), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14893-:d:1260237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.