IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p2979-d1060328.html
   My bibliography  Save this article

Current and Future Trends for Crude Glycerol Upgrading to High Value-Added Products

Author

Listed:
  • Muhammad Harussani Moklis

    (Energy Science and Engineering, Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, 2-12-1 S6-10, Ookayama, Meguro-ku, Tokyo 152-8552, Japan)

  • Shou Cheng

    (Energy Science and Engineering, Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, 2-12-1 S6-10, Ookayama, Meguro-ku, Tokyo 152-8552, Japan)

  • Jeffrey S. Cross

    (Energy Science and Engineering, Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, 2-12-1 S6-10, Ookayama, Meguro-ku, Tokyo 152-8552, Japan)

Abstract

Crude glycerol is the main byproduct of biodiesel manufacturing from oleaginous crops and other biomass-derived oils. Approximately 10% crude glycerol is produced with every batch of biodiesel. Worldwide, there is a glut of glycerol and the price of it has decreased considerably. There are real opportunities for valorizing crude glycerol into higher value-added chemicals which can improve the economic viability of biodiesel production as an alternative fuel. Exploring new potential applications of glycerol in various sectors is needed such as in pharmaceuticals, food and beverages, cosmetics, and as a transportation fuel. However, crude glycerol produced directly from biodiesel often contains impurities that hinder its direct industrial usage and thus, a refining process is needed which is typically expensive. Hence, this review reports on current upgrading crude glycerol technologies—thermo-, bio-, physico-, and electrochemical approaches—that valorize it into higher value-added chemicals. Through comparison between those viable upgrading techniques, future research directions, challenges, and advantages/disadvantage of the technologies are described. Electrochemical technology, which is still underdeveloped in this field, is highlighted, due to its simplicity, low maintenance cost, and it working in ambient condition, as it shows promising potential to be applied as a major glycerol upgrading technique.

Suggested Citation

  • Muhammad Harussani Moklis & Shou Cheng & Jeffrey S. Cross, 2023. "Current and Future Trends for Crude Glycerol Upgrading to High Value-Added Products," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:2979-:d:1060328
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/2979/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/2979/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nanda, Malaya R. & Zhang, Yongsheng & Yuan, Zhongshun & Qin, Wensheng & Ghaziaskar, Hassan S. & Xu, Chunbao (Charles), 2016. "Catalytic conversion of glycerol for sustainable production of solketal as a fuel additive: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1022-1031.
    2. Tan, H.W. & Abdul Aziz, A.R. & Aroua, M.K., 2013. "Glycerol production and its applications as a raw material: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 118-127.
    3. Adnan, Nur Amelia Azreen & Suhaimi, Sheril Norliana & Abd-Aziz, Suraini & Hassan, Mohd Ali & Phang, Lai-Yee, 2014. "Optimization of bioethanol production from glycerol by Escherichia coli SS1," Renewable Energy, Elsevier, vol. 66(C), pages 625-633.
    4. Ayoub, Muhammad & Abdullah, Ahmad Zuhairi, 2012. "Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2671-2686.
    5. Okoye, P.U. & Hameed, B.H., 2016. "Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 558-574.
    6. Sedghi, Reza & Shahbeik, Hossein & Rastegari, Hajar & Rafiee, Shahin & Peng, Wanxi & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Chen, Wei-Hsin & Lam, Su Shiung & Pan, Junting & Tabatabaei, Meisam & A, 2022. "Turning biodiesel glycerol into oxygenated fuel additives and their effects on the behavior of internal combustion engines: A comprehensive systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Abel Rodrigues & João Carlos Bordado & Rui Galhano dos Santos, 2017. "Upgrading the Glycerol from Biodiesel Production as a Source of Energy Carriers and Chemicals—A Technological Review for Three Chemical Pathways," Energies, MDPI, vol. 10(11), pages 1-36, November.
    8. Lam, Su Shiung & Liew, Rock Keey & Jusoh, Ahmad & Chong, Cheng Tung & Ani, Farid Nasir & Chase, Howard A., 2016. "Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 741-753.
    9. Hunsom, Mali & Saila, Payia, 2015. "Electrochemical conversion of enriched crude glycerol: Effect of operating parameters," Renewable Energy, Elsevier, vol. 74(C), pages 227-236.
    10. Gholami, Zahra & Abdullah, Ahmad Zuhairi & Lee, Keat-Teong, 2014. "Dealing with the surplus of glycerol production from biodiesel industry through catalytic upgrading to polyglycerols and other value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 327-341.
    11. Hejna, Aleksander & Kosmela, Paulina & Formela, Krzysztof & Piszczyk, Łukasz & Haponiuk, Józef T., 2016. "Potential applications of crude glycerol in polymer technology–Current state and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 449-475.
    12. Quispe, César A.G. & Coronado, Christian J.R. & Carvalho Jr., João A., 2013. "Glycerol: Production, consumption, prices, characterization and new trends in combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 475-493.
    13. Gupta, Mayank & Kumar, Naveen, 2012. "Scope and opportunities of using glycerol as an energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4551-4556.
    14. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    15. Saifuddin Nomanbhay & Mei Yin Ong & Kit Wayne Chew & Pau-Loke Show & Man Kee Lam & Wei-Hsin Chen, 2020. "Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel Production: A Review," Energies, MDPI, vol. 13(6), pages 1-23, March.
    16. Khosravanipour Mostafazadeh, Ali & De La Torre, Maria Samantha & Padilla, Yessika & Drogui, Patrick & Brar, Satinder Kaur & Tyagi, Rajeshwar Dayal & Le Bihan, Yann & Buelna, Gerardo & Moroyoqui, Pablo, 2021. "An insight into an electro-catalytic reactor concept for high value-added production from crude glycerol: Optimization, electrode passivation, product distribution, and reaction pathway identification," Renewable Energy, Elsevier, vol. 172(C), pages 130-144.
    17. Chen, Dong & Wang, Wenju & Liu, Chenlong, 2020. "Hydrogen production through glycerol steam reforming over beehive-biomimetic graphene-encapsulated nickel catalysts," Renewable Energy, Elsevier, vol. 145(C), pages 2647-2657.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński & Aneta Ignaciuk & Sandra Mlonek & Jordi Cruz Sanchez, 2024. "The Biosynthesis of Liquid Fuels and Other Value-Added Products Based on Waste Glycerol—A Comprehensive Review and Bibliometric Analysis," Energies, MDPI, vol. 17(12), pages 1-31, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Quan (Sophia) & McNutt, Josiah & Yang, Jie, 2017. "Utilization of the residual glycerol from biodiesel production for renewable energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 63-76.
    2. Monteiro, Marcos Roberto & Kugelmeier, Cristie Luis & Pinheiro, Rafael Sanaiotte & Batalha, Mario Otávio & da Silva César, Aldara, 2018. "Glycerol from biodiesel production: Technological paths for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 109-122.
    3. Cornejo, A. & Barrio, I. & Campoy, M. & Lázaro, J. & Navarrete, B., 2017. "Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1400-1413.
    4. Hejna, Aleksander & Kosmela, Paulina & Formela, Krzysztof & Piszczyk, Łukasz & Haponiuk, Józef T., 2016. "Potential applications of crude glycerol in polymer technology–Current state and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 449-475.
    5. Okoye, P.U. & Abdullah, A.Z. & Hameed, B.H., 2017. "A review on recent developments and progress in the kinetics and deactivation of catalytic acetylation of glycerol—A byproduct of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 387-401.
    6. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Hezaveh, Hadi, 2014. "Glycerol for renewable acrolein production by catalytic dehydration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 28-59.
    7. Stanislaw Szwaja & Michal Gruca & Michal Pyrc & Romualdas Juknelevičius, 2021. "Performance and Exhaust Emissions of a Spark Ignition Internal Combustion Engine Fed with Butanol–Glycerol Blend," Energies, MDPI, vol. 14(20), pages 1-15, October.
    8. Is Fatimah & Imam Sahroni & Ganjar Fadillah & Muhammad Miqdam Musawwa & Teuku Meurah Indra Mahlia & Oki Muraza, 2019. "Glycerol to Solketal for Fuel Additive: Recent Progress in Heterogeneous Catalysts," Energies, MDPI, vol. 12(15), pages 1-14, July.
    9. Zhang, Jianan & Wang, Yuesen & Muldoon, Valerie L. & Deng, Sili, 2022. "Crude glycerol and glycerol as fuels and fuel additives in combustion applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Lapuerta, Magín & Rodríguez-Fernández, José & García-Contreras, Reyes, 2015. "Effect of a glycerol-derived advanced biofuel –FAGE (fatty acid formal glycerol ester)– on the emissions of a diesel engine tested under the New European Driving Cycle," Energy, Elsevier, vol. 93(P1), pages 568-579.
    11. Mamtani, Kapil & Shahbaz, Kaveh & Farid, Mohammed M., 2021. "Glycerolysis of free fatty acids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    12. Michal Gruca & Michal Pyrc & Magdalena Szwaja & Stanislaw Szwaja, 2020. "Effective Combustion of Glycerol in a Compression Ignition Engine Equipped with Double Direct Fuel Injection," Energies, MDPI, vol. 13(23), pages 1-14, December.
    13. Okoye, Patrick U. & Wang, Song & Khanday, Waheed Ahmad & Li, Sanxi & Tang, Tao & Zhang, Linnan, 2020. "Box-Behnken optimization of glycerol transesterification reaction to glycerol carbonate over calcined oil palm fuel ash derived catalyst," Renewable Energy, Elsevier, vol. 146(C), pages 2676-2687.
    14. Saifuddin Nomanbhay & Mei Yin Ong & Kit Wayne Chew & Pau-Loke Show & Man Kee Lam & Wei-Hsin Chen, 2020. "Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel Production: A Review," Energies, MDPI, vol. 13(6), pages 1-23, March.
    15. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    16. Okoye, P.U. & Hameed, B.H., 2016. "Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 558-574.
    17. Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Kalogirou, Soteris A. & Gupta, Vijai Kumar & Park, Young-Kwon & Fallahi, Alireza & Sulaiman, Alawi & Ranjbari, Meisam & Rahnama, Hassan & Aghbashl, 2022. "Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Tamošiūnas, Andrius & Gimžauskaitė, Dovilė & Uscila, Rolandas & Aikas, Mindaugas, 2019. "Thermal arc plasma gasification of waste glycerol to syngas," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Kong, Pei San & Aroua, Mohamed Kheireddine & Daud, Wan Mohd Ashri Wan, 2016. "Conversion of crude and pure glycerol into derivatives: A feasibility evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 533-555.
    20. Abel Rodrigues & João Carlos Bordado & Rui Galhano dos Santos, 2017. "Upgrading the Glycerol from Biodiesel Production as a Source of Energy Carriers and Chemicals—A Technological Review for Three Chemical Pathways," Energies, MDPI, vol. 10(11), pages 1-36, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:2979-:d:1060328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.