IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p3035-d1418539.html
   My bibliography  Save this article

The Biosynthesis of Liquid Fuels and Other Value-Added Products Based on Waste Glycerol—A Comprehensive Review and Bibliometric Analysis

Author

Listed:
  • Joanna Kazimierowicz

    (Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland)

  • Marcin Dębowski

    (Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Str. Oczapowskiego 5, 10-719 Olsztyn, Poland)

  • Marcin Zieliński

    (Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Str. Oczapowskiego 5, 10-719 Olsztyn, Poland)

  • Aneta Ignaciuk

    (Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland)

  • Sandra Mlonek

    (Department of Building Structures and Structural Mechanics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland)

  • Jordi Cruz Sanchez

    (Department of Basic Formation, Escola Universitària Salesiana de Sarrià, Passeig Sant Joan Bosco, 74, 08017 Barcelona, Spain)

Abstract

Waste glycerol can be subjected to various processing operations, including purification and refining, to obtain glycerol of an appropriate purity. Alternative methods for utilising waste glycerol are also being sought, e.g., by converting it into other valuable chemical products or biofuels. Therefore, various technologies are being developed to ensure effective and sustainable utilisation of this type of waste. The production of value-added products from waste glycerol strongly determines the improvement of the economic viability of biofuel production and corresponds to the model of a waste-free and emission-free circular economy. This paper characterises the mechanisms and evaluates the efficiency of existing methods for microbiological utilisation of waste glycerol into liquid biofuels, including biodiesel, bioethanol and biobutanol, and identifies further production avenues of value-added products. In addition, it presents the results of a bibliographical analysis of publications related to the production of liquid fuels and economically valuable products from glycerol, assesses the progress of research and application work and, finally, identifies areas for future research.

Suggested Citation

  • Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński & Aneta Ignaciuk & Sandra Mlonek & Jordi Cruz Sanchez, 2024. "The Biosynthesis of Liquid Fuels and Other Value-Added Products Based on Waste Glycerol—A Comprehensive Review and Bibliometric Analysis," Energies, MDPI, vol. 17(12), pages 1-31, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:3035-:d:1418539
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/3035/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/3035/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Harussani Moklis & Shou Cheng & Jeffrey S. Cross, 2023. "Current and Future Trends for Crude Glycerol Upgrading to High Value-Added Products," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
    2. Zhang, Jianan & Wang, Yuesen & Muldoon, Valerie L. & Deng, Sili, 2022. "Crude glycerol and glycerol as fuels and fuel additives in combustion applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Varrone, C. & Liberatore, R. & Crescenzi, T. & Izzo, G. & Wang, A., 2013. "The valorization of glycerol: Economic assessment of an innovative process for the bioconversion of crude glycerol into ethanol and hydrogen," Applied Energy, Elsevier, vol. 105(C), pages 349-357.
    4. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Rajaei, Kourosh & Tarighi, Sara, 2018. "Oxidation of bio-renewable glycerol to value-added chemicals through catalytic and electro-chemical processes," Applied Energy, Elsevier, vol. 230(C), pages 1347-1379.
    5. Szymon Talbierz & Marcin Dębowski & Natalia Kujawska & Joanna Kazimierowicz & Marcin Zieliński, 2022. "Optimization of Lipid Production by Schizochytrium limacinum Biomass Modified with Ethyl Methane Sulfonate and Grown on Waste Glycerol," IJERPH, MDPI, vol. 19(5), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Da Seul Kong & Eun Joo Park & Sakuntala Mutyala & Minsoo Kim & Yunchul Cho & Sang Eun Oh & Changman Kim & Jung Rae Kim, 2021. "Bioconversion of Crude Glycerol into 1,3-Propanediol(1,3-PDO) with Bioelectrochemical System and Zero-Valent Iron Using Klebsiella pneumoniae L17," Energies, MDPI, vol. 14(20), pages 1-10, October.
    2. He, Quan (Sophia) & McNutt, Josiah & Yang, Jie, 2017. "Utilization of the residual glycerol from biodiesel production for renewable energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 63-76.
    3. Zhang, Heng & Li, Hu & Hu, Yulin & Venkateswara Rao, Kasanneni Tirumala & Xu, Chunbao (Charles) & Yang, Song, 2019. "Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Is Fatimah & Imam Sahroni & Ganjar Fadillah & Muhammad Miqdam Musawwa & Teuku Meurah Indra Mahlia & Oki Muraza, 2019. "Glycerol to Solketal for Fuel Additive: Recent Progress in Heterogeneous Catalysts," Energies, MDPI, vol. 12(15), pages 1-14, July.
    5. Zhao, Man & Wang, Yanan & Zhou, Wenting & Zhou, Wei & Gong, Zhiwei, 2023. "Co-valorization of crude glycerol and low-cost substrates via oleaginous yeasts to micro-biodiesel: Status and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    6. Remón, J. & Arcelus-Arrillaga, P. & García, L. & Arauzo, J., 2018. "Simultaneous production of gaseous and liquid biofuels from the synergetic co-valorisation of bio-oil and crude glycerol in supercritical water," Applied Energy, Elsevier, vol. 228(C), pages 2275-2287.
    7. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Rajaei, Kourosh & Tarighi, Sara, 2018. "Oxidation of bio-renewable glycerol to value-added chemicals through catalytic and electro-chemical processes," Applied Energy, Elsevier, vol. 230(C), pages 1347-1379.
    8. S. M. Rafiul Islam & Ishaan Patel & Lulin Jiang, 2024. "Effect of Methane on Combustion of Glycerol and Methanol Blends Using a Novel Swirl Burst Injector in a Model Dual-Fuel Gas Turbine Combustor," Clean Technol., MDPI, vol. 6(4), pages 1-20, October.
    9. Demichelis, Francesca & Fiore, Silvia & Pleissner, Daniel & Venus, Joachim, 2018. "Technical and economic assessment of food waste valorization through a biorefinery chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 38-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:3035-:d:1418539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.