IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v40y2014icp28-59.html
   My bibliography  Save this article

Glycerol for renewable acrolein production by catalytic dehydration

Author

Listed:
  • Talebian-Kiakalaieh, Amin
  • Amin, Nor Aishah Saidina
  • Hezaveh, Hadi

Abstract

The significant surge in biodiesel production by transesterification of edible or non-edible oils have caused surplus of glycerol in the market. With its characteristics, unique structure, renewability, and bio-availability, glycerol has tremendous potential to be transformed to higher value-added chemicals. This article provides a comprehensive and critical review of glycerol dehydration to acrolein in both petroleum-and bio-based processes. Acrolein has enormous industrial applications as a significant chemical intermediate for acrylic acid, dl-Methionine and superabsorbent polymer production. The current development of several precursors on suitable support such as heteropoly acids, zeolites, mixed metal oxides, and pyrophosphates in creating superior catalytic properties for both liquid- and gas-phase processes has been discussed. The acidity and textural properties of various catalysts, as significant variables affecting acrolein yield and selectivity, are evaluated separately. Techno-economical evaluation on dehydration of petroleum- and bio-based glycerol to acrolein proved that the bio-based processes are more feasible compared to the conventional petroleum-based process. In addition, various proposed mechanisms for catalytic dehydration of glycerol to acrolein have been examined. Particularly, catalyst coking and few crude glycerol applications have been identified as the main drawbacks for immediate industrialization and commercialization of glycerol dehydration to acrolein.

Suggested Citation

  • Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Hezaveh, Hadi, 2014. "Glycerol for renewable acrolein production by catalytic dehydration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 28-59.
  • Handle: RePEc:eee:rensus:v:40:y:2014:i:c:p:28-59
    DOI: 10.1016/j.rser.2014.07.168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114006200
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.07.168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, H.W. & Abdul Aziz, A.R. & Aroua, M.K., 2013. "Glycerol production and its applications as a raw material: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 118-127.
    2. Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Norhasyima, R.S., 2011. "Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3501-3515.
    3. Quispe, César A.G. & Coronado, Christian J.R. & Carvalho Jr., João A., 2013. "Glycerol: Production, consumption, prices, characterization and new trends in combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 475-493.
    4. Gupta, Mayank & Kumar, Naveen, 2012. "Scope and opportunities of using glycerol as an energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4551-4556.
    5. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Zarei, Alireza & Noshadi, Iman, 2013. "Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model," Applied Energy, Elsevier, vol. 102(C), pages 283-292.
    6. Sannita, Eugenia & Aliakbarian, Bahar & Casazza, Alessandro A. & Perego, Patrizia & Busca, Guido, 2012. "Medium-temperature conversion of biomass and wastes into liquid products, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6455-6475.
    7. Ayoub, Muhammad & Abdullah, Ahmad Zuhairi, 2012. "Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2671-2686.
    8. H. Fansuri & G. H. Pham & S. Wibawanta & D. K. Zhang & David French, 2003. "The Relationship Between Structural and Catalytic Activity of α and γ-Bismuth-Molybdate Catalysts for Partial Oxidation of Propylene to Acrolein," Surface Review and Letters (SRL), World Scientific Publishing Co. Pte. Ltd., vol. 10(02n03), pages 549-553.
    9. Leoneti, Alexandre Bevilacqua & Aragão-Leoneti, Valquiria & de Oliveira, Sonia Valle Walter Borges, 2012. "Glycerol as a by-product of biodiesel production in Brazil: Alternatives for the use of unrefined glycerol," Renewable Energy, Elsevier, vol. 45(C), pages 138-145.
    10. Rahmat, Norhasyimi & Abdullah, Ahmad Zuhairi & Mohamed, Abdul Rahman, 2010. "Recent progress on innovative and potential technologies for glycerol transformation into fuel additives: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 987-1000, April.
    11. Markočič, Elena & Kramberger, Boris & van Bennekom, Joost G. & Jan Heeres, Hero & Vos, John & Knez, Željko, 2013. "Glycerol reforming in supercritical water; a short review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 40-48.
    12. Izquierdo, J.F. & Montiel, M. & Palés, I. & Outón, P.R. & Galán, M. & Jutglar, L. & Villarrubia, M. & Izquierdo, M. & Hermo, M.P. & Ariza, X., 2012. "Fuel additives from glycerol etherification with light olefins: State of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6717-6724.
    13. Bahadar, Ali & Bilal Khan, M., 2013. "Progress in energy from microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 128-148.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lima, Dirleia S. & Perez-Lopez, Oscar W., 2019. "Catalytic conversion of glycerol to olefins over Fe, Mo, and Nb catalysts supported on zeolite ZSM-5," Renewable Energy, Elsevier, vol. 136(C), pages 828-836.
    2. Ramalingam, Senthil & Ezhumalai, Manikandan & Govindasamy, Mohan, 2019. "Syngas: Derived from biodiesel and its influence on CI engine," Energy, Elsevier, vol. 189(C).
    3. He, Quan (Sophia) & McNutt, Josiah & Yang, Jie, 2017. "Utilization of the residual glycerol from biodiesel production for renewable energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 63-76.
    4. Okoye, P.U. & Hameed, B.H., 2016. "Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 558-574.
    5. Hejna, Aleksander & Kosmela, Paulina & Formela, Krzysztof & Piszczyk, Łukasz & Haponiuk, Józef T., 2016. "Potential applications of crude glycerol in polymer technology–Current state and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 449-475.
    6. Monteiro, Marcos Roberto & Kugelmeier, Cristie Luis & Pinheiro, Rafael Sanaiotte & Batalha, Mario Otávio & da Silva César, Aldara, 2018. "Glycerol from biodiesel production: Technological paths for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 109-122.
    7. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part I," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1427-1445.
    8. Kong, Pei San & Aroua, Mohamed Kheireddine & Daud, Wan Mohd Ashri Wan, 2016. "Conversion of crude and pure glycerol into derivatives: A feasibility evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 533-555.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Quan (Sophia) & McNutt, Josiah & Yang, Jie, 2017. "Utilization of the residual glycerol from biodiesel production for renewable energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 63-76.
    2. Hejna, Aleksander & Kosmela, Paulina & Formela, Krzysztof & Piszczyk, Łukasz & Haponiuk, Józef T., 2016. "Potential applications of crude glycerol in polymer technology–Current state and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 449-475.
    3. Monteiro, Marcos Roberto & Kugelmeier, Cristie Luis & Pinheiro, Rafael Sanaiotte & Batalha, Mario Otávio & da Silva César, Aldara, 2018. "Glycerol from biodiesel production: Technological paths for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 109-122.
    4. Kong, Pei San & Aroua, Mohamed Kheireddine & Daud, Wan Mohd Ashri Wan, 2016. "Conversion of crude and pure glycerol into derivatives: A feasibility evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 533-555.
    5. Galadima, Ahmad & Muraza, Oki, 2014. "Biodiesel production from algae by using heterogeneous catalysts: A critical review," Energy, Elsevier, vol. 78(C), pages 72-83.
    6. Ramalingam, Senthil & Ezhumalai, Manikandan & Govindasamy, Mohan, 2019. "Syngas: Derived from biodiesel and its influence on CI engine," Energy, Elsevier, vol. 189(C).
    7. Muhammad Harussani Moklis & Shou Cheng & Jeffrey S. Cross, 2023. "Current and Future Trends for Crude Glycerol Upgrading to High Value-Added Products," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
    8. Cornejo, A. & Barrio, I. & Campoy, M. & Lázaro, J. & Navarrete, B., 2017. "Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1400-1413.
    9. Okoye, P.U. & Hameed, B.H., 2016. "Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 558-574.
    10. Silva, Wellington Costa & Castro, Maria Priscila Pessanha & Perez, Victor Haber & Machado, Francisco A. & Mota, Leonardo & Sthel, Marcelo Silva, 2016. "Thermal degradation of ethanolic biodiesel: Physicochemical and thermal properties evaluation," Energy, Elsevier, vol. 114(C), pages 1093-1099.
    11. Mariem Harabi & Soumaya Neji Bouguerra & Fatma Marrakchi & Loukia P. Chrysikou & Stella Bezergianni & Mohamed Bouaziz, 2019. "Biodiesel and Crude Glycerol from Waste Frying Oil: Production, Characterization and Evaluation of Biodiesel Oxidative Stability with Diesel Blends," Sustainability, MDPI, vol. 11(7), pages 1-15, April.
    12. Rafael Estevez & Laura Aguado-Deblas & Diego Luna & Felipa M. Bautista, 2019. "An Overview of the Production of Oxygenated Fuel Additives by Glycerol Etherification, Either with Isobutene or tert -Butyl Alcohol, over Heterogeneous Catalysts," Energies, MDPI, vol. 12(12), pages 1-20, June.
    13. Sedghi, Reza & Shahbeik, Hossein & Rastegari, Hajar & Rafiee, Shahin & Peng, Wanxi & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Chen, Wei-Hsin & Lam, Su Shiung & Pan, Junting & Tabatabaei, Meisam & A, 2022. "Turning biodiesel glycerol into oxygenated fuel additives and their effects on the behavior of internal combustion engines: A comprehensive systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Zhang, Jianan & Wang, Yuesen & Muldoon, Valerie L. & Deng, Sili, 2022. "Crude glycerol and glycerol as fuels and fuel additives in combustion applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    15. Ardi, M.S. & Aroua, M.K. & Hashim, N. Awanis, 2015. "Progress, prospect and challenges in glycerol purification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1164-1173.
    16. Mohsin Raza & Abrar Inayat & Basim Abu-Jdayil, 2021. "Crude Glycerol as a Potential Feedstock for Future Energy via Thermochemical Conversion Processes: A Review," Sustainability, MDPI, vol. 13(22), pages 1-27, November.
    17. Mamtani, Kapil & Shahbaz, Kaveh & Farid, Mohammed M., 2021. "Glycerolysis of free fatty acids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Gholami, Zahra & Abdullah, Ahmad Zuhairi & Lee, Keat-Teong, 2014. "Dealing with the surplus of glycerol production from biodiesel industry through catalytic upgrading to polyglycerols and other value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 327-341.
    19. Francesco Asdrubali & Franco Cotana & Federico Rossi & Andrea Presciutti & Antonella Rotili & Claudia Guattari, 2015. "Life Cycle Assessment of New Oxy-Fuels from Biodiesel-Derived Glycerol," Energies, MDPI, vol. 8(3), pages 1-16, February.
    20. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:40:y:2014:i:c:p:28-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.