IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i21p15489-d1271723.html
   My bibliography  Save this article

Smart Building Thermal Management: A Data-Driven Approach Based on Dynamic and Consensus Clustering

Author

Listed:
  • Hua Chen

    (School of Economics, Fujian Normal University, Fuzhou 350117, China
    These authors contributed equally to this work.)

  • Shuang Dai

    (Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ, UK
    These authors contributed equally to this work.)

  • Fanlin Meng

    (Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ, UK)

Abstract

A customized and cost-effective building thermal control system is critical for accommodating thermal performance differences within the building, as well as satisfying the individual thermal comfort needs of occupants. Moreover, incorporating a building indoor thermal simulation procedure into the thermal control system can reduce the necessity of installing various expensive sensors (e.g., wearable sensors for personal thermal comfort management) in individual offices, as well as the requirement of extensive computing facilities without rendering the control performance, resulting into more sustainable building operations. An important step in achieving the above-mentioned goal is understanding how different offices/rooms behave differently given the same outdoor weather conditions. This study proposes a smart building indoor thermal profiling system to identify underlying physical factors that affect thermal performance in different seasons and to track dynamic cluster trajectories of considered offices to suggest indoor thermal optimization strategies. A consensus-based clustering approach is adopted to robustly cluster offices into different groups based on their hourly indoor temperature profiles for different seasons. Experimental results showed that our proposed approach could effectively discover more indoor thermal patterns in the buildings and is able to identify distinct dynamic cluster trajectories across four seasons (i.e., eight distinct dynamic trajectories in our case study). The data-driven analysis conducted in this study also indicated promising applications of the proposed smart building indoor thermal profiling system in effectively guiding the design of customized thermal control strategies for buildings. It also suggested that the proposed approach could be applied to a wide range of other applications, such as customized building energy management, energy pricing, as well as the economic benefit analysis of building retrofits and design.

Suggested Citation

  • Hua Chen & Shuang Dai & Fanlin Meng, 2023. "Smart Building Thermal Management: A Data-Driven Approach Based on Dynamic and Consensus Clustering," Sustainability, MDPI, vol. 15(21), pages 1-25, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15489-:d:1271723
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/21/15489/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/21/15489/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jazizadeh, Farrokh & Jung, Wooyoung, 2018. "Personalized thermal comfort inference using RGB video images for distributed HVAC control," Applied Energy, Elsevier, vol. 220(C), pages 829-841.
    2. Hsu, David, 2015. "Comparison of integrated clustering methods for accurate and stable prediction of building energy consumption data," Applied Energy, Elsevier, vol. 160(C), pages 153-163.
    3. Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
    4. Levesque, Antoine & Pietzcker, Robert C. & Luderer, Gunnar, 2019. "Halving energy demand from buildings: The impact of low consumption practices," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 253-266.
    5. Montero, Pablo & Vilar, José A., 2014. "TSclust: An R Package for Time Series Clustering," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 62(i01).
    6. Mengda Jia & Ravi Srinivasan, 2020. "Building Performance Evaluation Using Coupled Simulation of EnergyPlus™ and an Occupant Behavior Model," Sustainability, MDPI, vol. 12(10), pages 1-13, May.
    7. Le, Duc Nha & Le Tuan, Loc & Dang Tuan, Minh Nguyen, 2019. "Smart-building management system: An Internet-of-Things (IoT) application business model in Vietnam," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 22-35.
    8. Meng, Fanlin & Ma, Qian & Liu, Zixu & Zeng, Xiao-Jun, 2023. "Multiple dynamic pricing for demand response with adaptive clustering-based customer segmentation in smart grids," Applied Energy, Elsevier, vol. 333(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wenqiang & Gong, Guangcai & Fan, Houhua & Peng, Pei & Chun, Liang & Fang, Xi, 2021. "A clustering-based approach for “cross-scale” load prediction on building level in HVAC systems," Applied Energy, Elsevier, vol. 282(PB).
    2. Belaïd, Fateh & Joumni, Haitham, 2020. "Behavioral attitudes towards energy saving: Empirical evidence from France," Energy Policy, Elsevier, vol. 140(C).
    3. Habtamu Tkubet Ebuy & Hind Bril El Haouzi & Riad Benelmir & Remi Pannequin, 2023. "Occupant Behavior Impact on Building Sustainability Performance: A Literature Review," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    4. Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
    5. Qiuyi Hong & Fanlin Meng & Jian Liu, 2023. "Customised Multi-Energy Pricing: Model and Solutions," Energies, MDPI, vol. 16(4), pages 1-31, February.
    6. Gianluca Trotta & Kirsten Gram-Hanssen & Pernille Lykke Jørgensen, 2020. "Heterogeneity of Electricity Consumption Patterns in Vulnerable Households," Energies, MDPI, vol. 13(18), pages 1-17, September.
    7. Matos, José M.A. & Ramos, Sandra & Costa, Vítor, 2019. "Stochastic simulated rents in Portuguese public-private partnerships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 107-117.
    8. Andreas Andreou & Panagiotis Fragkos & Theofano Fotiou & Faidra Filippidou, 2022. "Assessing Lifestyle Transformations and Their Systemic Effects in Energy-System and Integrated Assessment Models: A Review of Current Methods and Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
    9. Csereklyei, Zsuzsanna & Anantharama, Nandini & Kallies, Anne, 2021. "Electricity market transitions in Australia: Evidence using model-based clustering," Energy Economics, Elsevier, vol. 103(C).
    10. Beibei Zhang & Rong Chen, 2018. "Nonlinear Time Series Clustering Based on Kolmogorov-Smirnov 2D Statistic," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 394-421, October.
    11. Jihye Ryu & Jungsoo Kim, 2021. "Effect of Different HVAC Control Strategies on Thermal Comfort and Adaptive Behavior in High-Rise Apartments," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    12. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    13. Shi, Zhengyu & Wu, Libo & Zhou, Yang, 2023. "Predicting household energy consumption in an aging society," Applied Energy, Elsevier, vol. 352(C).
    14. Hanjo Odendaal & Monique Reid & Johann F. Kirsten, 2020. "Media‐Based Sentiment Indices as an Alternative Measure of Consumer Confidence," South African Journal of Economics, Economic Society of South Africa, vol. 88(4), pages 409-434, December.
    15. George M. Stavrakakis & Dimitris Bakirtzis & Korina-Konstantina Drakaki & Sofia Yfanti & Dimitris Al. Katsaprakakis & Konstantinos Braimakis & Panagiotis Langouranis & Konstantinos Terzis & Panagiotis, 2024. "Application of the Typology Approach for Energy Renovation Planning of Public Buildings’ Stocks at the Local Level: A Case Study in Greece," Energies, MDPI, vol. 17(3), pages 1-30, January.
    16. Stephen L. France & Yuying Shi, 2017. "Aggregating Google Trends: Multivariate Testing and Analysis," Papers 1712.03152, arXiv.org, revised Mar 2018.
    17. Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).
    18. Koasidis, Konstantinos & Marinakis, Vangelis & Nikas, Alexandros & Chira, Katerina & Flamos, Alexandros & Doukas, Haris, 2022. "Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece," Energy Policy, Elsevier, vol. 161(C).
    19. Pullinger, Martin & Zapata-Webborn, Ellen & Kilgour, Jonathan & Elam, Simon & Few, Jessica & Goddard, Nigel & Hanmer, Clare & McKenna, Eoghan & Oreszczyn, Tadj & Webb, Lynda, 2024. "Capturing variation in daily energy demand profiles over time with cluster analysis in British homes (September 2019 – August 2022)," Applied Energy, Elsevier, vol. 360(C).
    20. Szczepocki Piotr, 2019. "Clustering Companies Listed on the Warsaw Stock Exchange According to Time-Varying Beta," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(2), pages 63-79, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15489-:d:1271723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.