IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v220y2018icp829-841.html
   My bibliography  Save this article

Personalized thermal comfort inference using RGB video images for distributed HVAC control

Author

Listed:
  • Jazizadeh, Farrokh
  • Jung, Wooyoung

Abstract

HVAC systems account for more than 40% of energy consumption in buildings to provide satisfactory indoor environments for occupants. The integration of personalized thermal comfort in the operation of HVAC systems has been shown to be highly effective in enhancing energy efficiency of buildings. To this end, research efforts have proposed personalized thermal comfort assessment through voting (i.e., occupant feedback) and profiling as well as physiological response measurement. In this study, we have proposed a novel approach for enabling RGB video cameras as sensors for measuring personalized thermoregulation states – an indicator of thermal comfort. If their feasibility for thermoregulation state inference could be established, optical cameras provide a cost-effective and omnipresent solution for distributed measurement of thermal comfort and consequently control of HVAC systems for energy saving. Accordingly, we have proposed a framework that draws on the concepts of thermoregulation mechanisms in the human body as well as the Eulerian video magnification approach. The framework is composed of several components including face detection, skin pixels isolation, image magnification. And calculation of detection index to infer subtle blood flow variations to the facial skin surface (i.e., blood perfusion), which is due to thermoregulation adjustments. In order to minimize the impact of variable illumination condition and the ambient noise on the results, different combinations of methods for framework components were taken into account. The feasibility assessments were conducted through an experimental study with 21 participants under low (20 °C) and high (30 °C) temperatures. In total, 16 positive cases out of 18 statistically significant cases were observed resulting in 89% of success rate using the most promising combinations of the methods. The results demonstrate that the proposed framework could contribute to realization of a non-intrusive, cost-effective, and ubiquitous distributed thermal comfort assessment that has been proven critical in increasing energy efficiency of the HVAC system through distributed control feedback.

Suggested Citation

  • Jazizadeh, Farrokh & Jung, Wooyoung, 2018. "Personalized thermal comfort inference using RGB video images for distributed HVAC control," Applied Energy, Elsevier, vol. 220(C), pages 829-841.
  • Handle: RePEc:eee:appene:v:220:y:2018:i:c:p:829-841
    DOI: 10.1016/j.apenergy.2018.02.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918301740
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Wonuk & Jeon, Yongseok & Kim, Yongchan, 2016. "Simulation-based optimization of an integrated daylighting and HVAC system using the design of experiments method," Applied Energy, Elsevier, vol. 162(C), pages 666-674.
    2. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    3. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2015. "Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule," Applied Energy, Elsevier, vol. 149(C), pages 194-203.
    4. Chowdhury, Ashfaque Ahmed & Rasul, M.G. & Khan, M.M.K., 2008. "Thermal-comfort analysis and simulation for various low-energy cooling-technologies applied to an office building in a subtropical climate," Applied Energy, Elsevier, vol. 85(6), pages 449-462, June.
    5. Dounis, A.I. & Caraiscos, C., 2009. "Advanced control systems engineering for energy and comfort management in a building environment--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1246-1261, August.
    6. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2016. "Occupancy-based demand response and thermal comfort optimization in microgrids with renewable energy sources and energy storage," Applied Energy, Elsevier, vol. 163(C), pages 93-104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Idahosa, Love Odion & Akotey, Joseph Oscar, 2021. "A social constructionist approach to managing HVAC energy consumption using social norms – A randomised field experiment," Energy Policy, Elsevier, vol. 154(C).
    2. Jihye Ryu & Jungsoo Kim, 2021. "Effect of Different HVAC Control Strategies on Thermal Comfort and Adaptive Behavior in High-Rise Apartments," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    3. Jung, Wooyoung & Jazizadeh, Farrokh, 2020. "Energy saving potentials of integrating personal thermal comfort models for control of building systems: Comprehensive quantification through combinatorial consideration of influential parameters," Applied Energy, Elsevier, vol. 268(C).
    4. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    5. Darowicki, K. & Janicka, E. & Mielniczek, M. & Zielinski, A. & Gawel, L. & Mitzel, J. & Hunger, J., 2019. "The influence of dynamic load changes on temporary impedance in hydrogen fuel cells, selection and validation of the electrical equivalent circuit," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Hua Chen & Shuang Dai & Fanlin Meng, 2023. "Smart Building Thermal Management: A Data-Driven Approach Based on Dynamic and Consensus Clustering," Sustainability, MDPI, vol. 15(21), pages 1-25, October.
    7. Wang, Junqi & Jiang, Lanfei & Yu, Hanhui & Feng, Zhuangbo & Castaño-Rosa, Raúl & Cao, Shi-jie, 2024. "Computer vision to advance the sensing and control of built environment towards occupant-centric sustainable development: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Marek Kraft & Przemysław Aszkowski & Dominik Pieczyński & Michał Fularz, 2021. "Low-Cost Thermal Camera-Based Counting Occupancy Meter Facilitating Energy Saving in Smart Buildings," Energies, MDPI, vol. 14(15), pages 1-12, July.
    9. Bie, Yiming & Liu, Yajun & Li, Shiwu & Wang, Linhong, 2022. "HVAC operation planning for electric bus trips based on chance-constrained programming," Energy, Elsevier, vol. 258(C).
    10. Chaudhuri, Tanaya & Soh, Yeng Chai & Li, Hua & Xie, Lihua, 2019. "A feedforward neural network based indoor-climate control framework for thermal comfort and energy saving in buildings," Applied Energy, Elsevier, vol. 248(C), pages 44-53.
    11. Kristian Fabbri & Jacopo Gaspari & Laura Vandi, 2019. "Indoor Thermal Comfort of Pregnant Women in Hospital: A Case Study Evidence," Sustainability, MDPI, vol. 11(23), pages 1-24, November.
    12. Quddus Tushar & Guomin Zhang & Satheeskumar Navaratnam & Muhammed A. Bhuiyan & Lei Hou & Filippo Giustozzi, 2023. "A Review of Evaluative Measures of Carbon-Neutral Buildings: The Bibliometric and Science Mapping Analysis towards Sustainability," Sustainability, MDPI, vol. 15(20), pages 1-31, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2017. "User satisfaction-induced demand side load management in residential buildings with user budget constraint," Applied Energy, Elsevier, vol. 187(C), pages 352-366.
    2. Barbeito, Inés & Zaragoza, Sonia & Tarrío-Saavedra, Javier & Naya, Salvador, 2017. "Assessing thermal comfort and energy efficiency in buildings by statistical quality control for autocorrelated data," Applied Energy, Elsevier, vol. 190(C), pages 1-17.
    3. Abhinandana Boodi & Karim Beddiar & Malek Benamour & Yassine Amirat & Mohamed Benbouzid, 2018. "Intelligent Systems for Building Energy and Occupant Comfort Optimization: A State of the Art Review and Recommendations," Energies, MDPI, vol. 11(10), pages 1-26, September.
    4. Baldi, Simone & Korkas, Christos D. & Lv, Maolong & Kosmatopoulos, Elias B., 2018. "Automating occupant-building interaction via smart zoning of thermostatic loads: A switched self-tuning approach," Applied Energy, Elsevier, vol. 231(C), pages 1246-1258.
    5. Baldi, Simone & Yuan, Shuai & Endel, Petr & Holub, Ondrej, 2016. "Dual estimation: Constructing building energy models from data sampled at low rate," Applied Energy, Elsevier, vol. 169(C), pages 81-92.
    6. Fazli Wahid & Muhammad Fayaz & Ayman Aljarbouh & Masood Mir & Muhammad Aamir & Imran, 2020. "Energy Consumption Optimization and User Comfort Maximization in Smart Buildings Using a Hybrid of the Firefly and Genetic Algorithms," Energies, MDPI, vol. 13(17), pages 1-26, August.
    7. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    8. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    9. Giaouris, Damian & Papadopoulos, Athanasios I. & Patsios, Charalampos & Walker, Sara & Ziogou, Chrysovalantou & Taylor, Phil & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos, 2018. "A systems approach for management of microgrids considering multiple energy carriers, stochastic loads, forecasting and demand side response," Applied Energy, Elsevier, vol. 226(C), pages 546-559.
    10. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    11. Wang, Zhe & Hong, Tianzhen, 2020. "Learning occupants’ indoor comfort temperature through a Bayesian inference approach for office buildings in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Byung-Ki Jeon & Eui-Jong Kim, 2021. "LSTM-Based Model Predictive Control for Optimal Temperature Set-Point Planning," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    13. Arcos-Aviles, Diego & Pascual, Julio & Guinjoan, Francesc & Marroyo, Luis & Sanchis, Pablo & Marietta, Martin P., 2017. "Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting," Applied Energy, Elsevier, vol. 205(C), pages 69-84.
    14. Baloch, Ashfaque Ahmed & Shaikh, Pervez Hameed & Shaikh, Faheemullah & Leghari, Zohaib Hussain & Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam, 2018. "Simulation tools application for artificial lighting in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3007-3026.
    15. Francesca Marcello & Virginia Pilloni & Daniele Giusto, 2019. "Sensor-Based Early Activity Recognition Inside Buildings to Support Energy and Comfort Management Systems," Energies, MDPI, vol. 12(13), pages 1-18, July.
    16. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    17. Kristian Fabbri & Jacopo Gaspari & Laura Vandi, 2019. "Indoor Thermal Comfort of Pregnant Women in Hospital: A Case Study Evidence," Sustainability, MDPI, vol. 11(23), pages 1-24, November.
    18. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    19. Mohseni, Amin & Mortazavi, Seyed Saeidollah & Ghasemi, Ahmad & Nahavandi, Ali & Talaei abdi, Masoud, 2017. "The application of household appliances' flexibility by set of sequential uninterruptible energy phases model in the day-ahead planning of a residential microgrid," Energy, Elsevier, vol. 139(C), pages 315-328.
    20. Adefarati, T. & Bansal, R.C., 2017. "Reliability and economic assessment of a microgrid power system with the integration of renewable energy resources," Applied Energy, Elsevier, vol. 206(C), pages 911-933.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:220:y:2018:i:c:p:829-841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.