IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2440-d1050941.html
   My bibliography  Save this article

Occupant Behavior Impact on Building Sustainability Performance: A Literature Review

Author

Listed:
  • Habtamu Tkubet Ebuy

    (Université de Lorraine, CRAN, UMR 7039, Campus Sciences, BP 70239, 54506 Vandœuvre-Lès-Nancy, France
    SIMPPE, LERMAB, 54506 Vandœuvre-Lès-Nancy, France)

  • Hind Bril El Haouzi

    (Université de Lorraine, CRAN, UMR 7039, Campus Sciences, BP 70239, 54506 Vandœuvre-Lès-Nancy, France)

  • Riad Benelmir

    (SIMPPE, LERMAB, 54506 Vandœuvre-Lès-Nancy, France)

  • Remi Pannequin

    (Université de Lorraine, CRAN, UMR 7039, Campus Sciences, BP 70239, 54506 Vandœuvre-Lès-Nancy, France)

Abstract

Occupant behavior controls a building’s energy system to adapt the indoor environment, significantly increasing building energy consumption. Occupant behavior, which refers to the occupancy inside a building and their interaction with building systems (windows, blinds, thermostats, lighting and appliances, etc.), has been largely overlooked in building energy performance analysis. These factors make it essential to design sustainable buildings. It is widely acknowledged in the literature that there is an alarming performance gap between the estimated and actual energy consumption in buildings. This paper proposes a systematic literature review on energy-related occupant behaviors and their implications for energy performance. It aims to better understand occupant behavior, existing behavior modeling approaches and their limitations, and key influential parameters on building energy performance. It is based on a survey of ScienceDirect, Web of science and Scopus scientific databases, using their bibliometric analysis tools together with the VOSviewer software. Finally, this study identifies the following significant research gaps for future development: limitations of the generic and robust occupant behavior model; lack of actual data for validation; lack of research on different types of buildings (institutions, university buildings); limitations of considering all factors which influence occupant behavior; missing the detailed realistic situations of occupant behavior; integrating building information modeling (BIM) into building energy modeling.

Suggested Citation

  • Habtamu Tkubet Ebuy & Hind Bril El Haouzi & Riad Benelmir & Remi Pannequin, 2023. "Occupant Behavior Impact on Building Sustainability Performance: A Literature Review," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2440-:d:1050941
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2440/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2440/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Menezes, Anna Carolina & Cripps, Andrew & Bouchlaghem, Dino & Buswell, Richard, 2012. "Predicted vs. actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap," Applied Energy, Elsevier, vol. 97(C), pages 355-364.
    2. Ioan Petri & Sylvain Kubicki & Yacine Rezgui & Annie Guerriero & Haijiang Li, 2017. "Optimizing Energy Efficiency in Operating Built Environment Assets through Building Information Modeling: A Case Study," Energies, MDPI, vol. 10(8), pages 1-17, August.
    3. Gaetani, Isabella & Hoes, Pieter-Jan & Hensen, Jan L.M., 2018. "Estimating the influence of occupant behavior on building heating and cooling energy in one simulation run," Applied Energy, Elsevier, vol. 223(C), pages 159-171.
    4. Stefania Bandini & Sara Manzoni & Giuseppe Vizzari, 2009. "Agent Based Modeling and Simulation: An Informatics Perspective," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(4), pages 1-4.
    5. Florin LEON & Gabriela M. ATANASIU, 2008. "Integrating artificial intelligence into organizational intelligence," Management & Marketing, Economic Publishing House, vol. 3(2), Summer.
    6. Mengda Jia & Ravi Srinivasan, 2020. "Building Performance Evaluation Using Coupled Simulation of EnergyPlus™ and an Occupant Behavior Model," Sustainability, MDPI, vol. 12(10), pages 1-13, May.
    7. Yu, Zhun (Jerry) & Haghighat, Fariborz & Fung, Benjamin C.M. & Morofsky, Edward & Yoshino, Hiroshi, 2011. "A methodology for identifying and improving occupant behavior in residential buildings," Energy, Elsevier, vol. 36(11), pages 6596-6608.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bianchi, Carlo & Zhang, Liang & Goldwasser, David & Parker, Andrew & Horsey, Henry, 2020. "Modeling occupancy-driven building loads for large and diversified building stocks through the use of parametric schedules," Applied Energy, Elsevier, vol. 276(C).
    2. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
    3. Tronchin, Lamberto & Manfren, Massimiliano & Nastasi, Benedetto, 2018. "Energy efficiency, demand side management and energy storage technologies – A critical analysis of possible paths of integration in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 341-353.
    4. Xu, Xiaoxiao & Yu, Hao & Sun, Qiuwen & Tam, Vivian W.Y., 2023. "A critical review of occupant energy consumption behavior in buildings: How we got here, where we are, and where we are headed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    5. Bishnu Nepal & Motoi Yamaha & Hiroya Sahashi & Aya Yokoe, 2019. "Analysis of Building Electricity Use Pattern Using K-Means Clustering Algorithm by Determination of Better Initial Centroids and Number of Clusters," Energies, MDPI, vol. 12(12), pages 1-17, June.
    6. Michele Roccotelli & Alessandro Rinaldi & Maria Pia Fanti & Francesco Iannone, 2020. "Building Energy Management for Passive Cooling Based on Stochastic Occupants Behavior Evaluation," Energies, MDPI, vol. 14(1), pages 1-24, December.
    7. Anti Hamburg & Targo Kalamees, 2018. "The Influence of Energy Renovation on the Change of Indoor Temperature and Energy Use," Energies, MDPI, vol. 11(11), pages 1-15, November.
    8. Jakob Carlander & Bahram Moshfegh & Jan Akander & Fredrik Karlsson, 2020. "Effects on Energy Demand in an Office Building Considering Location, Orientation, Façade Design and Internal Heat Gains—A Parametric Study," Energies, MDPI, vol. 13(23), pages 1-22, November.
    9. Jeoung Yul Lee & Ilkhom Okmirzaevich Irisboev & Yeon-Sik Ryu, 2021. "Literature Review on Digitalization in Facilities Management and Facilities Management Performance Measurement: Contribution of Industry 4.0 in the Global Era," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
    10. Alencastro, João & Fuertes, Alba & de Wilde, Pieter, 2018. "The relationship between quality defects and the thermal performance of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 883-894.
    11. Prasanna, Ashreeta & Dorer, Viktor & Vetterli, Nadège, 2017. "Optimisation of a district energy system with a low temperature network," Energy, Elsevier, vol. 137(C), pages 632-648.
    12. Zhong, Shengyuan & Zhao, Jun & Li, Wenjia & Li, Hao & Deng, Shuai & Li, Yang & Hussain, Sajjad & Wang, Xiaoyuan & Zhu, Jiebei, 2021. "Quantitative analysis of information interaction in building energy systems based on mutual information," Energy, Elsevier, vol. 214(C).
    13. Eugene Mohareb & Arman Hashemi & Mehdi Shahrestani & Minna Sunikka-Blank, 2017. "Retrofit Planning for the Performance Gap: Results of a Workshop on Addressing Energy, Health and Comfort Needs in a Protected Building," Energies, MDPI, vol. 10(8), pages 1-17, August.
    14. Pierryves Padey & Kyriaki Goulouti & Guy Wagner & Blaise Périsset & Sébastien Lasvaux, 2021. "Understanding the Reasons behind the Energy Performance Gap of an Energy-Efficient Building, through a Probabilistic Approach and On-Site Measurements," Energies, MDPI, vol. 14(19), pages 1-15, September.
    15. Gupta, Rajat & Kotopouleas, Alkis, 2018. "Magnitude and extent of building fabric thermal performance gap in UK low energy housing," Applied Energy, Elsevier, vol. 222(C), pages 673-686.
    16. Wang, Lan & Lee, Eric W.M. & Hussian, Syed Asad & Yuen, Anthony Chun Yin & Feng, Wei, 2021. "Quantitative impact analysis of driving factors on annual residential building energy end-use combining machine learning and stochastic methods," Applied Energy, Elsevier, vol. 299(C).
    17. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    18. Abdulazeez Rotimi & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2017. "Estimation and Validation of Energy Consumption in UK Existing Hotel Building Using Dynamic Simulation Software," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    19. Li, Xinyi & Yao, Runming & Li, Qin & Ding, Yong & Li, Baizhan, 2018. "An object-oriented energy benchmark for the evaluation of the office building stock," Utilities Policy, Elsevier, vol. 51(C), pages 1-11.
    20. Le Cam, M. & Daoud, A. & Zmeureanu, R., 2016. "Forecasting electric demand of supply fan using data mining techniques," Energy, Elsevier, vol. 101(C), pages 541-557.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2440-:d:1050941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.