IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14082-d1245735.html
   My bibliography  Save this article

Electrifying Buses for Public Transport: Boundaries with a Performance Analysis Based on Method and Experience

Author

Listed:
  • Bruno Dalla Chiara

    (Politecnico di Torino, Department DIATI-Transport Systems, Corso Duca degli Abruzzi 24, 10129 Turin, Italy)

  • Giovanni Pede

    (ENEA, S. Maria di Galeria, 00123 Rome, Italy)

  • Francesco Deflorio

    (Politecnico di Torino, Department DIATI-Transport Systems, Corso Duca degli Abruzzi 24, 10129 Turin, Italy)

  • Marco Zanini

    (GTT, Gruppo Torinese Trasporti, 10128 Turin, Italy)

Abstract

It is widely expected that electric vehicles will be able to satisfy most road transport needs. The aim of this paper is to provide an answer to how far the electrification of buses used for local public transport can be pursuable through insight into the engineering problems and range, i.e., the autonomy on battery, as well as the efficiency of recharging systems. At first, a wide survey of the main solutions that are present on the market, or foreseen for the near future, concerning the electrification of fleets for LPT is provided. Thereafter, such solutions are compared through numerical applications and by using a practical case study, pertaining to the city of Turin (IT), where static inductive charging has been extensively experienced. Particular attention is paid to engineering problems and to the autonomy on battery of the vehicles as a function of their mass, electric energy storage system, charging opportunities and infrastructure, while comparing the time and efficiency of recharging systems. The authors conclude by recommending the most promising alternatives for battery electric buses while outlining their limits, striving to provide for the literature a research instrument, which is lacking, for delimitating the applicability of electric buses for LPT while outlining the viable solutions.

Suggested Citation

  • Bruno Dalla Chiara & Giovanni Pede & Francesco Deflorio & Marco Zanini, 2023. "Electrifying Buses for Public Transport: Boundaries with a Performance Analysis Based on Method and Experience," Sustainability, MDPI, vol. 15(19), pages 1-33, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14082-:d:1245735
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14082/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14082/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gerboni, Raffaella & Grosso, Daniele & Carpignano, Andrea & Dalla Chiara, Bruno, 2017. "Linking energy and transport models to support policy making," Energy Policy, Elsevier, vol. 111(C), pages 336-345.
    2. Krystian Pietrzak & Oliwia Pietrzak, 2020. "Environmental Effects of Electromobility in a Sustainable Urban Public Transport," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    3. Gao, Zhiming & Lin, Zhenhong & LaClair, Tim J. & Liu, Changzheng & Li, Jan-Mou & Birky, Alicia K. & Ward, Jacob, 2017. "Battery capacity and recharging needs for electric buses in city transit service," Energy, Elsevier, vol. 122(C), pages 588-600.
    4. Harris, Andrew & Soban, Danielle & Smyth, Beatrice M. & Best, Robert, 2018. "Assessing life cycle impacts and the risk and uncertainty of alternative bus technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 569-579.
    5. Dalla Chiara, Bruno & Deflorio, Francesco & Eid, Marco, 2019. "Analysis of real driving data to explore travelling needs in relation to hybrid–electric vehicle solutions," Transport Policy, Elsevier, vol. 80(C), pages 97-116.
    6. Basma, Hussein & Mansour, Charbel & Haddad, Marc & Nemer, Maroun & Stabat, Pascal, 2020. "Comprehensive energy modeling methodology for battery electric buses," Energy, Elsevier, vol. 207(C).
    7. Lajunen, Antti & Lipman, Timothy, 2016. "Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses," Energy, Elsevier, vol. 106(C), pages 329-342.
    8. Purnell, K. & Bruce, A.G. & MacGill, I., 2022. "Impacts of electrifying public transit on the electricity grid, from regional to state level analysis," Applied Energy, Elsevier, vol. 307(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel Koman & Dominika Toman & Radoslav Jankal & Silvia Krúpová, 2024. "Public Transport Infrastructure with Electromobility Elements at the Smart City Level to Support Sustainability," Sustainability, MDPI, vol. 16(3), pages 1-25, January.
    2. Krystian Pietrzak & Oliwia Pietrzak & Andrzej Montwiłł, 2023. "A Study on the Effects of Applying Cargo Delivery Systems to Support Energy Transition in Agglomeration Areas—An Example of the Szczecin Agglomeration, Poland," Energies, MDPI, vol. 16(24), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Say, Kelvin & Csereklyei, Zsuzsanna & Brown, Felix Gabriel & Wang, Changlong, 2023. "The economics of public transport electrification: A case study from Victoria, Australia," Energy Economics, Elsevier, vol. 120(C).
    2. Basma, Hussein & Mansour, Charbel & Haddad, Marc & Nemer, Maroun & Stabat, Pascal, 2022. "Energy consumption and battery sizing for different types of electric bus service," Energy, Elsevier, vol. 239(PE).
    3. Krzysztof KRAWIEC, 2021. "Vehicle Cycle Hierarchization Model To Determine The Order Of Battery Electric Bus Deployment In Public Transport," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 16(1), pages 99-112, March.
    4. Harris, Andrew & Soban, Danielle & Smyth, Beatrice M. & Best, Robert, 2020. "A probabilistic fleet analysis for energy consumption, life cycle cost and greenhouse gas emissions modelling of bus technologies," Applied Energy, Elsevier, vol. 261(C).
    5. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    6. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    7. Basma, Hussein & Haddad, Marc & Mansour, Charbel & Nemer, Maroun & Stabat, Pascal, 2022. "Evaluation of the techno-economic performance of battery electric buses: Case study of a bus line in paris," Research in Transportation Economics, Elsevier, vol. 95(C).
    8. Viana-Fons, Joan Dídac & Payá, Jorge, 2024. "HVAC system operation, consumption and compressor size optimization in urban buses of Mediterranean cities," Energy, Elsevier, vol. 296(C).
    9. Wu, Xiaomei & Feng, Qijin & Bai, Chenchen & Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei, 2021. "A novel fast-charging stations locational planning model for electric bus transit system," Energy, Elsevier, vol. 224(C).
    10. Basma, Hussein & Mansour, Charbel & Haddad, Marc & Nemer, Maroun & Stabat, Pascal, 2023. "A novel method for co-optimizing battery sizing and charging strategy of battery electric bus fleets: An application to the city of Paris," Energy, Elsevier, vol. 285(C).
    11. Li, Pengshun & Zhang, Yuhang & Zhang, Yi & Zhang, Yi & Zhang, Kai, 2021. "Prediction of electric bus energy consumption with stochastic speed profile generation modelling and data driven method based on real-world big data," Applied Energy, Elsevier, vol. 298(C).
    12. Dariusz Masłowski & Ewa Kulińska & Łukasz Krzewicki, 2023. "Alternative Methods of Replacing Electric Batteries in Public Transport Vehicles," Energies, MDPI, vol. 16(15), pages 1-22, August.
    13. Marcin Połom, 2021. "Technology Development and Spatial Diffusion of Auxiliary Power Sources in Trolleybuses in European Countries," Energies, MDPI, vol. 14(11), pages 1-18, May.
    14. Roman Michael Sennefelder & Rubén Martín-Clemente & Ramón González-Carvajal, 2023. "Energy Consumption Prediction of Electric City Buses Using Multiple Linear Regression," Energies, MDPI, vol. 16(11), pages 1-14, May.
    15. Mikołaj Bartłomiejczyk & Marcin Połom, 2021. "Possibilities for Developing Electromobility by Using Autonomously Powered Trolleybuses Based on the Example of Gdynia," Energies, MDPI, vol. 14(10), pages 1-23, May.
    16. Lim, Lek Keng & Muis, Zarina Ab & Ho, Wai Shin & Hashim, Haslenda & Bong, Cassendra Phun Chien, 2023. "Review of the energy forecasting and scheduling model for electric buses," Energy, Elsevier, vol. 263(PD).
    17. Ma, Xiaolei & Miao, Ran & Wu, Xinkai & Liu, Xianglong, 2021. "Examining influential factors on the energy consumption of electric and diesel buses: A data-driven analysis of large-scale public transit network in Beijing," Energy, Elsevier, vol. 216(C).
    18. Cong, Yuan & Wang, Heqi & Bie, Yiming & Wu, Jiabin, 2023. "Double-battery configuration method for electric bus operation in cold regions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    19. Li, Pengshun & Zhang, Yi & Zhang, Yi & Zhang, Kai & Jiang, Mengyan, 2021. "The effects of dynamic traffic conditions, route characteristics and environmental conditions on trip-based electricity consumption prediction of electric bus," Energy, Elsevier, vol. 218(C).
    20. Ali Saadon Al-Ogaili & Ali Q. Al-Shetwi & Hussein M. K. Al-Masri & Thanikanti Sudhakar Babu & Yap Hoon & Khaled Alzaareer & N. V. Phanendra Babu, 2021. "Review of the Estimation Methods of Energy Consumption for Battery Electric Buses," Energies, MDPI, vol. 14(22), pages 1-28, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14082-:d:1245735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.