A Liquid Metal Alternate MHD Disk Generator
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- José Carlos Domínguez-Lozoya & Sergio Cuevas & David Roberto Domínguez & Raúl Ávalos-Zúñiga & Eduardo Ramos, 2021. "Laboratory Characterization of a Liquid Metal MHD Generator for Ocean Wave Energy Conversion," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
- Jin, Siya & Greaves, Deborah, 2021. "Wave energy in the UK: Status review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Yang, Rui & Wang, Junxiang & Wu, Zhanghua & Huang, Bangdou & Luo, Ercang, 2023. "Performance analysis of thermoacoustic plasma MHD generation," Energy, Elsevier, vol. 263(PA).
- Zhu, Shunmin & Wang, Tong & Jiang, Chao & Wu, Zhanghua & Yu, Guoyao & Hu, Jianying & Markides, Christos N. & Luo, Ercang, 2023. "Experimental and numerical study of a liquid metal magnetohydrodynamic generator for thermoacoustic power generation," Applied Energy, Elsevier, vol. 348(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiang, Chao & Wang, Tong & Zhu, Shunmin & Yu, Guoyao & Wu, Zhanghua & Luo, Ercang, 2023. "A method to optimize the external magnetic field to suppress the end current in liquid metal magnetohydrodynamic generators," Energy, Elsevier, vol. 282(C).
- José Carlos Domínguez-Lozoya & David Roberto Domínguez-Lozoya & Sergio Cuevas & Raúl Alejandro Ávalos-Zúñiga, 2024. "MHD Generation for Sustainable Development, from Thermal to Wave Energy Conversion: Review," Sustainability, MDPI, vol. 16(22), pages 1-21, November.
- Zhu, Shunmin & Wang, Tong & Jiang, Chao & Wu, Zhanghua & Yu, Guoyao & Hu, Jianying & Markides, Christos N. & Luo, Ercang, 2023. "Experimental and numerical study of a liquid metal magnetohydrodynamic generator for thermoacoustic power generation," Applied Energy, Elsevier, vol. 348(C).
- Nadège Bouchonneau & Arnaud Coutrey & Vivianne Marie Bruère & Moacyr Araújo & Alex Costa da Silva, 2023. "Finite Element Modeling and Simulation of a Submerged Wave Energy Converter System for Application to Oceanic Islands in Tropical Atlantic," Energies, MDPI, vol. 16(4), pages 1-17, February.
- Abel Arredondo-Galeana & Baran Yeter & Farhad Abad & Stephanie Ordóñez-Sánchez & Saeid Lotfian & Feargal Brennan, 2023. "Material Selection Framework for Lift-Based Wave Energy Converters Using Fuzzy TOPSIS," Energies, MDPI, vol. 16(21), pages 1-26, October.
- Guo, Lixian & Zhao, Dan & Cheng, Li & Dong, Xu & Xu, Jingyuan, 2024. "Enhancing energy conversion performances in standing-wave thermoacoustic engine with externally forcing periodic oscillations," Energy, Elsevier, vol. 292(C).
- Yang, Zihao & Dong, Sheng, 2024. "A novel framework for wind energy assessment at multi-time scale based on non-stationary wind speed models: A case study in China," Renewable Energy, Elsevier, vol. 226(C).
- Liu, Zhan & Zhang, Yilun & Lv, Xinyu & Zhang, Yao & Liu, Junwei & Su, Chuanqi & Liu, Xianglei, 2023. "An electricity supply system by recovering the waste heat of commercial aeroengine," Energy, Elsevier, vol. 283(C).
- Zhou, Binzhen & Wang, Yu & Zheng, Zhi & Jin, Peng & Ning, Dezhi, 2023. "Power generation and wave attenuation of a hybrid system involving a heaving cylindrical wave energy converter in front of a parabolic breakwater," Energy, Elsevier, vol. 282(C).
- Zhou, Binzhen & Zheng, Zhi & Zhang, Qi & Jin, Peng & Wang, Lei & Ning, Dezhi, 2023. "Wave attenuation and amplification by an abreast pair of floating parabolic breakwaters," Energy, Elsevier, vol. 271(C).
- Karkaba, H. & Etienne, L. & Pelay, U. & Russeil, S. & Simo tala, J. & Boonaert, J. & Lecoeuche, S. & Bougeard, D., 2023. "Performance improvement of air cooled photo-voltaic thermal panel using economic model predictive control and vortex generators," Renewable Energy, Elsevier, vol. 218(C).
- Kamarlouei, M. & Gaspar, J.F. & Calvario, M. & Hallak, T.S. & Mendes, M.J.G.C. & Thiebaut, F. & Guedes Soares, C., 2022. "Experimental study of wave energy converter arrays adapted to a semi-submersible wind platform," Renewable Energy, Elsevier, vol. 188(C), pages 145-163.
- Hsu, Shu-Han & Liao, Zhe-Yi, 2024. "Impedance matching for investigating operational conditions in thermoacoustic Stirling fluidyne," Applied Energy, Elsevier, vol. 374(C).
- Muhammed Zafar Ali Khan & Haider Ali Khan & Muhammad Aziz, 2022. "Harvesting Energy from Ocean: Technologies and Perspectives," Energies, MDPI, vol. 15(9), pages 1-43, May.
- Arturs Brekis & Antoine Alemany & Olivier Alemany & Augusto Montisci, 2021. "Space Thermoacoustic Radioisotopic Power System, SpaceTRIPS: The Magnetohydrodynamic Generator," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
- Cheng, Yong & Song, Fukai & Xi, Chen & Collu, Maurizio & Yuan, Zhiming & Incecik, Atilla, 2023. "Feasibility of integrating a very large floating structure with multiple wave energy converters combining oscillating water columns and oscillating flaps," Energy, Elsevier, vol. 274(C).
- Cheng, Yong & Du, Weiming & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Cocard, Margot & Cui, Lin & Yuan, Zhiming & Incecik, Atilla, 2022. "Hydrodynamic characteristics of a hybrid oscillating water column-oscillating buoy wave energy converter integrated into a π-type floating breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Du, Xiaozhen & Li, Pengkai & Li, Zihao & Liu, Xiaotong & Wang, Wenxiu & Feng, Quanheng & Du, Lixiang & Yu, Hong & Wang, Jianjun & Xie, Xiangdong & Tang, Lihua, 2024. "Multi-pillar piezoelectric stack harvests ocean wave energy with oscillating float buoy," Energy, Elsevier, vol. 298(C).
- Shadmani, Alireza & Nikoo, Mohammad Reza & Gandomi, Amir H., 2024. "Adaptive systematic optimization of a multi-axis ocean wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Zheng, Siming & Phillips, John Wilfrid & Hann, Martyn & Greaves, Deborah, 2023. "Mathematical modelling of a floating Clam-type wave energy converter," Renewable Energy, Elsevier, vol. 210(C), pages 280-294.
More about this item
Keywords
magnetohydrodynamic disk generator; vibration power; liquid metals; permanent magnets;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12619-:d:1221424. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.