IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i22p10041-d1523311.html
   My bibliography  Save this article

MHD Generation for Sustainable Development, from Thermal to Wave Energy Conversion: Review

Author

Listed:
  • José Carlos Domínguez-Lozoya

    (Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80000, Mexico
    These authors contributed equally to this work.)

  • David Roberto Domínguez-Lozoya

    (Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80000, Mexico
    Instituto de Energías Renovables, Universidad Nacional Autónoma de México, A. P. 34, Temixco 62580, Mexico
    These authors contributed equally to this work.)

  • Sergio Cuevas

    (Instituto de Energías Renovables, Universidad Nacional Autónoma de México, A. P. 34, Temixco 62580, Mexico
    These authors contributed equally to this work.)

  • Raúl Alejandro Ávalos-Zúñiga

    (CICATA-Querétaro, Instituto Politécnico Nacional, Cerro Blanco 141, Colinas del Cimatario, Santiago de Querétaro 76090, Mexico
    These authors contributed equally to this work.)

Abstract

Magnetohydrodynamic (MHD) generators are direct energy conversion devices that transform the motion of an electrically conducting fluid into electricity through interaction with a magnetic field. Developed as an alternative to conventional turbine-generator systems, MHD generators evolved through the 20th century from large units, which are intended to transform thermal energy into electricity using plasma as a working fluid, to smaller units that can harness heat from a variety of sources. In the last few decades, an effort has been made to develop energy conversion systems that incorporate MHD generators to harvest renewable sources such as solar and ocean energy, strengthening the sustainability of this technology. This review briefly synthesizes the main steps in the evolution of MHD technology for electricity generation, starting by outlining its physical principles and the proposals to convert thermal energy into electricity, either using a high-temperature plasma as a working fluid or a liquid metal in a one- or two-phase flow at lower temperatures. The use of wave energy in the form of acoustic waves, which were obtained from the conversion of thermal energy through thermoacoustic devices coupled to liquid metal and plasma MHD generators, as well as alternatives for the transformation of environmental energy resources employing MHD transducers, is also assessed. Finally, proposals for the conversion of ocean energy, mainly in the form of waves and tides, into electric energy, through MHD generators using either seawater or liquid metal as working fluids, are presented along with some of the challenges of MHD conversion technology.

Suggested Citation

  • José Carlos Domínguez-Lozoya & David Roberto Domínguez-Lozoya & Sergio Cuevas & Raúl Alejandro Ávalos-Zúñiga, 2024. "MHD Generation for Sustainable Development, from Thermal to Wave Energy Conversion: Review," Sustainability, MDPI, vol. 16(22), pages 1-21, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:10041-:d:1523311
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/22/10041/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/22/10041/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. José Carlos Domínguez-Lozoya & Sergio Cuevas & David Roberto Domínguez & Raúl Ávalos-Zúñiga & Eduardo Ramos, 2021. "Laboratory Characterization of a Liquid Metal MHD Generator for Ocean Wave Energy Conversion," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
    2. Zhu, Shunmin & Wang, Tong & Jiang, Chao & Wu, Zhanghua & Yu, Guoyao & Hu, Jianying & Markides, Christos N. & Luo, Ercang, 2023. "Experimental and numerical study of a liquid metal magnetohydrodynamic generator for thermoacoustic power generation," Applied Energy, Elsevier, vol. 348(C).
    3. Jiang, Chao & Wang, Tong & Zhu, Shunmin & Yu, Guoyao & Wu, Zhanghua & Luo, Ercang, 2023. "A method to optimize the external magnetic field to suppress the end current in liquid metal magnetohydrodynamic generators," Energy, Elsevier, vol. 282(C).
    4. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoine Alemany & Arturs Brekis & Augusto Montisci, 2023. "A Liquid Metal Alternate MHD Disk Generator," Sustainability, MDPI, vol. 15(16), pages 1-18, August.
    2. Jiang, Chao & Wang, Tong & Zhu, Shunmin & Yu, Guoyao & Wu, Zhanghua & Luo, Ercang, 2023. "A method to optimize the external magnetic field to suppress the end current in liquid metal magnetohydrodynamic generators," Energy, Elsevier, vol. 282(C).
    3. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Deo, Ravinesh C., 2020. "Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    4. Vissio, Giacomo & Valério, Duarte & Bracco, Giovanni & Beirão, Pedro & Pozzi, Nicola & Mattiazzo, Giuliana, 2017. "ISWEC linear quadratic regulator oscillating control," Renewable Energy, Elsevier, vol. 103(C), pages 372-382.
    5. Nadège Bouchonneau & Arnaud Coutrey & Vivianne Marie Bruère & Moacyr Araújo & Alex Costa da Silva, 2023. "Finite Element Modeling and Simulation of a Submerged Wave Energy Converter System for Application to Oceanic Islands in Tropical Atlantic," Energies, MDPI, vol. 16(4), pages 1-17, February.
    6. Ahn, Seongho & Haas, Kevin A. & Neary, Vincent S., 2019. "Wave energy resource classification system for US coastal waters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 54-68.
    7. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    8. Adrian De Andres & Jéromine Maillet & Jørgen Hals Todalshaug & Patrik Möller & David Bould & Henry Jeffrey, 2016. "Techno-Economic Related Metrics for a Wave Energy Converters Feasibility Assessment," Sustainability, MDPI, vol. 8(11), pages 1-19, October.
    9. Seongho Ahn & Kevin A. Haas & Vincent S. Neary, 2020. "Dominant Wave Energy Systems and Conditional Wave Resource Characterization for Coastal Waters of the United States," Energies, MDPI, vol. 13(12), pages 1-26, June.
    10. Mota, P. & Pinto, J.P., 2014. "Wave energy potential along the western Portuguese coast," Renewable Energy, Elsevier, vol. 71(C), pages 8-17.
    11. Xiaohui Zeng & Qi Wang & Yuanshun Kang & Fajun Yu, 2022. "A Novel Type of Wave Energy Converter with Five Degrees of Freedom and Preliminary Investigations on Power-Generating Capacity," Energies, MDPI, vol. 15(9), pages 1-20, April.
    12. Oliveira, D. & Lopes de Almeida, J.P.P.G. & Santiago, A. & Rigueiro, C., 2022. "Development of a CFD-based numerical wave tank of a novel multipurpose wave energy converter," Renewable Energy, Elsevier, vol. 199(C), pages 226-245.
    13. Cuttler, Michael V.W. & Hansen, Jeff E. & Lowe, Ryan J., 2020. "Seasonal and interannual variability of the wave climate at a wave energy hotspot off the southwestern coast of Australia," Renewable Energy, Elsevier, vol. 146(C), pages 2337-2350.
    14. Ciappi, Lorenzo & Simonetti, Irene & Bianchini, Alessandro & Cappietti, Lorenzo & Manfrida, Giampaolo, 2022. "Application of integrated wave-to-wire modelling for the preliminary design of oscillating water column systems for installations in moderate wave climates," Renewable Energy, Elsevier, vol. 194(C), pages 232-248.
    15. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    16. Lisboa, Rodrigo C. & Teixeira, Paulo R.F. & Torres, Fernando R. & Didier, Eric, 2018. "Numerical evaluation of the power output of an oscillating water column wave energy converter installed in the southern Brazilian coast," Energy, Elsevier, vol. 162(C), pages 1115-1124.
    17. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    18. Samuel Draycott & Iwona Szadkowska & Marta Silva & David M Ingram, 2018. "Assessing the Macro-Economic Benefit of Installing a Farm of Oscillating Water Columns in Scotland and Portugal," Energies, MDPI, vol. 11(10), pages 1-20, October.
    19. Giannini, Gianmaria & Rosa-Santos, Paulo & Ramos, Victor & Taveira-Pinto, Francisco, 2022. "Wave energy converters design combining hydrodynamic performance and structural assessment," Energy, Elsevier, vol. 249(C).
    20. García-Medina, Gabriel & Özkan-Haller, H. Tuba & Ruggiero, Peter, 2014. "Wave resource assessment in Oregon and southwest Washington, USA," Renewable Energy, Elsevier, vol. 64(C), pages 203-214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:10041-:d:1523311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.