IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p959-d1593120.html
   My bibliography  Save this article

Review of Conductive Reciprocating Liquid Metal Magnetohydrodynamic Generators

Author

Listed:
  • Lingzhi Zhao

    (State Key Laboratory of High Density Electromagnetic Power and Systems, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
    School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100190, China)

  • Aiwu Peng

    (State Key Laboratory of High Density Electromagnetic Power and Systems, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
    School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100190, China)

Abstract

Reciprocating liquid metal magnetohydrodynamic (MHD) power generation is a new MHD power generation method in which the working fluid is a single-phase liquid metal with a low melting point and high conductivity. The internal combustion stroke of automobiles, ocean waves, sound waves and other reciprocating external forces drive the liquid metal to flow back and forth in an applied magnetic field, generating single-phase alternating current (AC) energy. Reciprocating liquid metal MHD (LMMHD) power generation has the advantages of a high power density, high efficiency, a fast start and good stability, and it provides a new solution for space static nuclear power conversion, variable-stroke automobile engines, distributed power supply and ocean energy utilization. According to the mode of action of an electromagnetic field, reciprocating LMMHD generators can be divided into the inductive type and conductive type. Compared with the inductive type, the conductive type has a simple structure and is the current research hot spot. Firstly, the classification and characteristics of reciprocating LMMHD power generation are introduced. Then, the working characteristics of conductive reciprocating LMMHD (CRLMMHD) generators are analyzed. On this basis, technical key points and issues in the current research of CRLMMHD generators are elaborated. Finally, conclusions and the future research direction of CRLMMHD generators are pointed out.

Suggested Citation

  • Lingzhi Zhao & Aiwu Peng, 2025. "Review of Conductive Reciprocating Liquid Metal Magnetohydrodynamic Generators," Energies, MDPI, vol. 18(4), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:959-:d:1593120
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/959/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/959/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. José Carlos Domínguez-Lozoya & David Roberto Domínguez-Lozoya & Sergio Cuevas & Raúl Alejandro Ávalos-Zúñiga, 2024. "MHD Generation for Sustainable Development, from Thermal to Wave Energy Conversion: Review," Sustainability, MDPI, vol. 16(22), pages 1-21, November.
    2. Jiang, Chao & Wang, Tong & Zhu, Shunmin & Yu, Guoyao & Wu, Zhanghua & Luo, Ercang, 2023. "A method to optimize the external magnetic field to suppress the end current in liquid metal magnetohydrodynamic generators," Energy, Elsevier, vol. 282(C).
    3. José Carlos Domínguez-Lozoya & Sergio Cuevas & David Roberto Domínguez & Raúl Ávalos-Zúñiga & Eduardo Ramos, 2021. "Laboratory Characterization of a Liquid Metal MHD Generator for Ocean Wave Energy Conversion," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
    4. Zhu, Shunmin & Wang, Tong & Jiang, Chao & Wu, Zhanghua & Yu, Guoyao & Hu, Jianying & Markides, Christos N. & Luo, Ercang, 2023. "Experimental and numerical study of a liquid metal magnetohydrodynamic generator for thermoacoustic power generation," Applied Energy, Elsevier, vol. 348(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Carlos Domínguez-Lozoya & David Roberto Domínguez-Lozoya & Sergio Cuevas & Raúl Alejandro Ávalos-Zúñiga, 2024. "MHD Generation for Sustainable Development, from Thermal to Wave Energy Conversion: Review," Sustainability, MDPI, vol. 16(22), pages 1-21, November.
    2. Antoine Alemany & Arturs Brekis & Augusto Montisci, 2023. "A Liquid Metal Alternate MHD Disk Generator," Sustainability, MDPI, vol. 15(16), pages 1-18, August.
    3. Jiang, Chao & Wang, Tong & Zhu, Shunmin & Yu, Guoyao & Wu, Zhanghua & Luo, Ercang, 2023. "A method to optimize the external magnetic field to suppress the end current in liquid metal magnetohydrodynamic generators," Energy, Elsevier, vol. 282(C).
    4. Wang, Yilin & Cheng, Kunlin & Xu, Jing & Jing, Wuxing & Huang, Hongyan & Qin, Jiang, 2024. "Thermodynamic and mass analysis of a novel two-phase liquid metal MHD enhanced energy conversion system for space nuclear power source," Energy, Elsevier, vol. 308(C).
    5. Liu, Zhan & Zhang, Yilun & Lv, Xinyu & Zhang, Yao & Liu, Junwei & Su, Chuanqi & Liu, Xianglei, 2023. "An electricity supply system by recovering the waste heat of commercial aeroengine," Energy, Elsevier, vol. 283(C).
    6. Hsu, Shu-Han & Liao, Zhe-Yi, 2024. "Impedance matching for investigating operational conditions in thermoacoustic Stirling fluidyne," Applied Energy, Elsevier, vol. 374(C).
    7. Zhu, Shunmin & Wang, Tong & Jiang, Chao & Wu, Zhanghua & Yu, Guoyao & Hu, Jianying & Markides, Christos N. & Luo, Ercang, 2023. "Experimental and numerical study of a liquid metal magnetohydrodynamic generator for thermoacoustic power generation," Applied Energy, Elsevier, vol. 348(C).
    8. Arturs Brekis & Antoine Alemany & Olivier Alemany & Augusto Montisci, 2021. "Space Thermoacoustic Radioisotopic Power System, SpaceTRIPS: The Magnetohydrodynamic Generator," Sustainability, MDPI, vol. 13(23), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:959-:d:1593120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.