IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10118-d1179611.html
   My bibliography  Save this article

Current Development Status, Policy Support and Promotion Path of China’s Green Hydrogen Industries under the Target of Carbon Emission Peaking and Carbon Neutrality

Author

Listed:
  • Lei Yang

    (School of Marxism, Shandong Jianzhu University, Jinan 250101, China)

  • Shuning Wang

    (Shandong Dongming Petrochemical Group Finance Co., Ltd., Heze 274000, China)

  • Zhihu Zhang

    (School of Mechanical Engineering, Tianjin University, Tianjin 300350, China)

  • Kai Lin

    (School of Finance, Faculty of Economics and Management, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250101, China)

  • Minggang Zheng

    (School of Mechanical and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China)

Abstract

The green hydrogen industry, highly efficient and safe, is endowed with flexible production and low carbon emissions. It is conducive to building a low-carbon, efficient and clean energy structure, optimizing the energy industry system and promoting the strategic transformation of energy development and enhancing energy security. In order to achieve carbon emission peaking by 2030 and neutrality by 2060 (dual carbon goals), China is vigorously promoting the green hydrogen industry. Based on an analysis of the green hydrogen industry policies of the U.S., the EU and Japan, this paper explores supporting policies issued by Chinese central and local authorities and examines the inherent advantages of China’s green hydrogen industry. After investigating and analyzing the basis for the development of the green hydrogen industry in China, we conclude that China has enormous potential, including abundant renewable energy resources as well as commercialization experience with renewable energy, robust infrastructure and technological innovation capacity, demand for large-scale applications of green hydrogen in traditional industries, etc. Despite this, China’s green hydrogen industry is still in its early stage and has encountered bottlenecks in its development, including a lack of clarity on the strategic role and position of the green hydrogen industry, low competitiveness of green hydrogen production, heavy reliance on imports of PEMs, perfluorosulfonic acid resins (PFSR) and other core components, the development dilemma of the industry chain, lack of installed capacity for green hydrogen production and complicated administrative permission, etc. This article therefore proposes that an appropriate development road-map and integrated administration supervision systems, including safety supervision, will systematically promote the green hydrogen industry. Enhancing the core technology and equipment of green hydrogen and improving the green hydrogen industry chain will be an adequate way to reduce dependence on foreign technologies, lowering the price of green hydrogen products through the scale effect and, thus, expanding the scope of application of green hydrogen. Financial support mechanisms such as providing tax breaks and project subsidies will encourage enterprises to carry out innovative technological research on and invest in the green hydrogen industry.

Suggested Citation

  • Lei Yang & Shuning Wang & Zhihu Zhang & Kai Lin & Minggang Zheng, 2023. "Current Development Status, Policy Support and Promotion Path of China’s Green Hydrogen Industries under the Target of Carbon Emission Peaking and Carbon Neutrality," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10118-:d:1179611
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10118/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10118/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Apostolou, D. & Xydis, G., 2019. "A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Liang DONG & Gaoyi MIAO & Weigang WEN, 2021. "China’s Carbon Neutrality Policy: Objectives, Impacts and Paths," East Asian Policy (EAP), World Scientific Publishing Co. Pte. Ltd., vol. 13(01), pages 5-18, January.
    3. Yu Hu & Yuanying Chi & Wenbing Zhou & Zhengzao Wang & Yongke Yuan & Ruoyang Li, 2022. "Research on Energy Structure Optimization and Carbon Emission Reduction Path in Beijing under the Dual Carbon Target," Energies, MDPI, vol. 15(16), pages 1-17, August.
    4. Pietzcker, Robert C. & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," Applied Energy, Elsevier, vol. 293(C).
    5. Hao-Ran Wang & Tian-Tian Feng & Yan Li & Hui-Min Zhang & Jia-Jie Kong, 2022. "What Is the Policy Effect of Coupling the Green Hydrogen Market, National Carbon Trading Market and Electricity Market?," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
    6. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    7. Feng Wang & Changhai Gao & Wulin Zhang & Danwen Huang, 2021. "Industrial Structure Optimization and Low-Carbon Transformation of Chinese Industry Based on the Forcing Mechanism of CO 2 Emission Peak Target," Sustainability, MDPI, vol. 13(8), pages 1-26, April.
    8. Huang, Ren & Zhang, Sufang & Wang, Peng, 2022. "Key areas and pathways for carbon emissions reduction in Beijing for the “Dual Carbon” targets," Energy Policy, Elsevier, vol. 164(C).
    9. Pietzcker, Robert & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," EconStor Preprints 222579, ZBW - Leibniz Information Centre for Economics, revised 2021.
    10. Velazquez Abad, Anthony & Dodds, Paul E., 2020. "Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges," Energy Policy, Elsevier, vol. 138(C).
    11. Yu, Jinglei & Shao, Chaofeng & Xue, Chenyang & Hu, Huaqing, 2020. "China's aircraft-related CO2 emissions: Decomposition analysis, decoupling status, and future trends," Energy Policy, Elsevier, vol. 138(C).
    12. Wu, Linfei & Sun, Liwen & Qi, Peixiao & Ren, Xiangwei & Sun, Xiaoting, 2021. "Energy endowment, industrial structure upgrading, and CO2 emissions in China: Revisiting resource curse in the context of carbon emissions," Resources Policy, Elsevier, vol. 74(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Gao & Qingmei Tan & Bo Cui, 2024. "Reducing Carbon Emissions from Coal-Fired Power Plants: An Analysis Using Evolutionary Game Theory," Sustainability, MDPI, vol. 16(23), pages 1-17, December.
    2. Yaoyao Yu & Lixia Yu & Xiaoyuan Chen & Zhiying Zhang & Ke Qing & Boyang Shen, 2024. "Prospects for Long-Distance Cascaded Liquid—Gaseous Hydrogen Delivery: An Economic and Environmental Assessment," Sustainability, MDPI, vol. 16(20), pages 1-17, October.
    3. Agata Jaroń & Anna Borucka, 2024. "Analysis of Energy System Transformations in the European Union," Energies, MDPI, vol. 17(23), pages 1-18, December.
    4. Ayiguzhali Tuluhong & Qingpu Chang & Lirong Xie & Zhisen Xu & Tengfei Song, 2024. "Current Status of Green Hydrogen Production Technology: A Review," Sustainability, MDPI, vol. 16(20), pages 1-47, October.
    5. Ning Lin & Liying Xu, 2024. "Navigating the Implementation of Tax Credits for Natural-Gas-Based Low-Carbon-Intensity Hydrogen Projects," Energies, MDPI, vol. 17(7), pages 1-15, March.
    6. Jamshid Yakhshilikov & Marco Cavana & Pierluigi Leone, 2024. "A Review of the Energy System and Transport Sector in Uzbekistan in View of Future Hydrogen Uptake," Energies, MDPI, vol. 17(16), pages 1-30, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Che, Shuai & Wang, Jun & Chen, Honghang, 2023. "Can China's decentralized energy governance reduce carbon emissions? Evidence from new energy demonstration cities," Energy, Elsevier, vol. 284(C).
    2. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    3. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    4. Martina Ricci & Marcello Benvenuto & Stefano Gino Mosele & Roberto Pacciani & Michele Marconcini, 2022. "Predicting the Impact of Compressor Flexibility Improvements on Heavy-Duty Gas Turbines for Minimum and Base Load Conditions," Energies, MDPI, vol. 15(20), pages 1-14, October.
    5. Dong, Kangyin & Yang, Senmiao & Wang, Jianda & Nepal, Rabindra & Jamasb, Tooraj, 2024. "Does Geopolitical Risk Accelerate Climate Vulnerability? New Evidence from the European Green Deal," Working Papers 15-2024, Copenhagen Business School, Department of Economics.
    6. Qu, Chunzi & Bang, Rasmus Noss, 2024. "European Grid Development Modeling and Analysis: Established Frameworks, Research Trends, and Future Opportunities," Discussion Papers 2024/11, Norwegian School of Economics, Department of Business and Management Science.
    7. Zheng Jiang & Shuohua Zhang & Wei Li, 2022. "Exploration of Urban Emission Mitigation Pathway under the Carbon Neutrality Target: A Case Study of Beijing, China," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    8. Hänsel, Martin C. & Franks, Max & Kalkuhl, Matthias & Edenhofer, Ottmar, 2022. "Optimal carbon taxation and horizontal equity: A welfare-theoretic approach with application to German household data," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    9. Pashchenko, Dmitry & Mustafin, Ravil & Karpilov, Igor, 2022. "Ammonia-fired chemically recuperated gas turbine: Thermodynamic analysis of cycle and recuperation system," Energy, Elsevier, vol. 252(C).
    10. Jan-Philipp Sasse & Evelina Trutnevyte, 2023. "A low-carbon electricity sector in Europe risks sustaining regional inequalities in benefits and vulnerabilities," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Jingna Kou & Wei Li & Rui Zhang & Dingxiong Shi, 2023. "Hydrogen as a Transition Tool in a Fossil Fuel Resource Region: Taking China’s Coal Capital Shanxi as an Example," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    12. Förster, Robert & Kaiser, Matthias & Wenninger, Simon, 2023. "Future vehicle energy supply - sustainable design and operation of hybrid hydrogen and electric microgrids," Applied Energy, Elsevier, vol. 334(C).
    13. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Cost-effective options and regional interdependencies of reaching a low-carbon European electricity system in 2035," Energy, Elsevier, vol. 282(C).
    14. Brown, T. & Reichenberg, L., 2021. "Decreasing market value of variable renewables can be avoided by policy action," Energy Economics, Elsevier, vol. 100(C).
    15. Ning Ren & Xiufan Zhang & Decheng Fan, 2022. "Influencing Factors and Realization Path of Power Decarbonization—Based on Panel Data Analysis of 30 Provinces in China from 2011 to 2019," IJERPH, MDPI, vol. 19(23), pages 1-24, November.
    16. Mariusz Pyra, 2023. "Simulation of the Progress of the Decarbonization Process in Poland’s Road Transport Sector," Energies, MDPI, vol. 16(12), pages 1-21, June.
    17. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    18. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    19. Buberger, Johannes & Kersten, Anton & Kuder, Manuel & Eckerle, Richard & Weyh, Thomas & Thiringer, Torbjörn, 2022. "Total CO2-equivalent life-cycle emissions from commercially available passenger cars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    20. Shirley Thompson, 2023. "Strategic Analysis of the Renewable Electricity Transition: Power to the World without Carbon Emissions?," Energies, MDPI, vol. 16(17), pages 1-34, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10118-:d:1179611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.