IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37946-3.html
   My bibliography  Save this article

A low-carbon electricity sector in Europe risks sustaining regional inequalities in benefits and vulnerabilities

Author

Listed:
  • Jan-Philipp Sasse

    (University of Geneva)

  • Evelina Trutnevyte

    (University of Geneva)

Abstract

Improving equity is an emerging priority in climate and energy strategies, but little is known how these strategies would alter inequalities. Regional inequalities such as price, employment and land use are especially relevant in the electricity sector, which must decarbonize first to allow other sectors to decarbonize. Here, we show that a European low-carbon electricity sector in 2035 can reduce but also sustain associated regional inequalities. Using spatially-explicit modeling for 296 sub-national regions, we demonstrate that emission cuts consistent with net-zero greenhouse gas emissions in 2050 result in continent-wide benefits by 2035 regarding electricity sector investments, employment gains, and decreased greenhouse gas and particulate matter emissions. However, the benefits risk being concentrated in affluent regions of Northern Europe, while regions of Southern and Southeastern Europe risk high vulnerabilities due to high adverse impacts and sensitivities, and low adaptive capacities. Future analysis should investigate policy mechanisms for reducing and compensating inequalities.

Suggested Citation

  • Jan-Philipp Sasse & Evelina Trutnevyte, 2023. "A low-carbon electricity sector in Europe risks sustaining regional inequalities in benefits and vulnerabilities," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37946-3
    DOI: 10.1038/s41467-023-37946-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37946-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37946-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oei, Pao-Yu & Hermann, Hauke & Herpich, Philipp & Holtemöller, Oliver & Lünenbürger, Benjamin & Schult, Christoph, 2020. "Coal phase-out in Germany – Implications and policies for affected regions," Energy, Elsevier, vol. 196(C).
    2. Jochen Markard, 2018. "The next phase of the energy transition and its implications for research and policy," Nature Energy, Nature, vol. 3(8), pages 628-633, August.
    3. Alberini, Anna & Gans, Will & Velez-Lopez, Daniel, 2011. "Residential Consumption of Gas and Electricity in the U.S.: The Role of Prices and Income," Sustainable Development Papers 99637, Fondazione Eni Enrico Mattei (FEEM).
    4. Luis Inostroza & Massimo Palme & Francisco de la Barrera, 2016. "A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Santiago de Chile," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-26, September.
    5. Cameron, Lachlan & van der Zwaan, Bob, 2015. "Employment factors for wind and solar energy technologies: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 160-172.
    6. Audrey Dobbins & Francesco Fuso Nerini & Paul Deane & Steve Pye, 2019. "Strengthening the EU response to energy poverty," Nature Energy, Nature, vol. 4(1), pages 2-5, January.
    7. Oei, Pao-Yu & Brauers, Hanna & Herpich, Philipp, 2020. "Lessons from Germany’s hard coal mining phase-out: policies and transition from 1950 to 2018," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 20(8), pages 963-979.
    8. Sen, Suphi & von Schickfus, Marie-Theres, 2020. "Climate policy, stranded assets, and investors’ expectations," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    9. Maarten Wolsink, 2018. "Co-production in distributed generation: renewable energy and creating space for fitting infrastructure within landscapes," Landscape Research, Taylor & Francis Journals, vol. 43(4), pages 542-561, May.
    10. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    11. van der Horst, Dan, 2007. "NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies," Energy Policy, Elsevier, vol. 35(5), pages 2705-2714, May.
    12. DeCarolis, Joseph F., 2011. "Using modeling to generate alternatives (MGA) to expand our thinking on energy futures," Energy Economics, Elsevier, vol. 33(2), pages 145-152, March.
    13. Betakova, Vendula & Vojar, Jiri & Sklenicka, Petr, 2015. "Wind turbines location: How many and how far?," Applied Energy, Elsevier, vol. 151(C), pages 23-31.
    14. Alberini, Anna & Gans, Will & Velez-Lopez, Daniel, 2011. "Residential consumption of gas and electricity in the U.S.: The role of prices and income," Energy Economics, Elsevier, vol. 33(5), pages 870-881, September.
    15. Jonathan J. Buonocore & Patrick Luckow & Gregory Norris & John D. Spengler & Bruce Biewald & Jeremy Fisher & Jonathan I. Levy, 2016. "Health and climate benefits of different energy-efficiency and renewable energy choices," Nature Climate Change, Nature, vol. 6(1), pages 100-105, January.
    16. R. McKenna & J. M. Weinand & I. Mulalic & S. Petrović & K. Mainzer & T. Preis & H. S. Moat, 2021. "Scenicness assessment of onshore wind sites with geotagged photographs and impacts on approval and cost-efficiency," Nature Energy, Nature, vol. 6(6), pages 663-672, June.
    17. Schumacher, K. & Krones, F. & McKenna, R. & Schultmann, F., 2019. "Public acceptance of renewable energies and energy autonomy: A comparative study in the French, German and Swiss Upper Rhine region," Energy Policy, Elsevier, vol. 126(C), pages 315-332.
    18. Dev Millstein & Ryan Wiser & Mark Bolinger & Galen Barbose, 2017. "The climate and air-quality benefits of wind and solar power in the United States," Nature Energy, Nature, vol. 2(9), pages 1-10, September.
    19. Sanya Carley & David M. Konisky, 2020. "The justice and equity implications of the clean energy transition," Nature Energy, Nature, vol. 5(8), pages 569-577, August.
    20. Pao-Yu Oei & Hanna Brauers & Philipp Herpich, 2020. "Lessons from Germany’s hard coal mining phase-out: policies and transition from 1950 to 2018," Climate Policy, Taylor & Francis Journals, vol. 20(8), pages 963-979, September.
    21. Walker, Gordon, 2008. "What are the barriers and incentives for community-owned means of energy production and use?," Energy Policy, Elsevier, vol. 36(12), pages 4401-4405, December.
    22. Liu, Haifeng & Tesfatsion, Leigh S. & Chowdhury, A.A., 2009. "Locational Marginal Pricing Basics for Restructured Wholesale Power Markets," Staff General Research Papers Archive 13072, Iowa State University, Department of Economics.
    23. Oehlmann, Malte & Glenk, Klaus & Lloyd-Smith, Patrick & Meyerhoff, Jürgen, 2021. "Quantifying landscape externalities of renewable energy development: Implications of attribute cut-offs in choice experiments," Resource and Energy Economics, Elsevier, vol. 65(C).
    24. Pietzcker, Robert C. & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," Applied Energy, Elsevier, vol. 293(C).
    25. Sanya Carley & Tom P. Evans & Michelle Graff & David M. Konisky, 2018. "A framework for evaluating geographic disparities in energy transition vulnerability," Nature Energy, Nature, vol. 3(8), pages 621-627, August.
    26. Sonnberger, Marco & Ruddat, Michael, 2017. "Local and socio-political acceptance of wind farms in Germany," Technology in Society, Elsevier, vol. 51(C), pages 56-65.
    27. Stognief, Nora & Walk, Paula & Schöttker, Oliver & Oei, Pao-Yu, 2019. "Economic Resilience of German Lignite Regions in Transition," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(21).
    28. Halkos, George E. & Gkampoura, Eleni-Christina, 2021. "Evaluating the effect of economic crisis on energy poverty in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    29. Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2022. "Accuracy indicators for evaluating retrospective performance of energy system models," Applied Energy, Elsevier, vol. 325(C).
    30. Steve Pye & Siân Bradley & Nick Hughes & James Price & Daniel Welsby & Paul Ekins, 2020. "An equitable redistribution of unburnable carbon," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    31. Tim Newbold & Lawrence N. Hudson & Samantha L. L. Hill & Sara Contu & Igor Lysenko & Rebecca A. Senior & Luca Börger & Dominic J. Bennett & Argyrios Choimes & Ben Collen & Julie Day & Adriana De Palma, 2015. "Global effects of land use on local terrestrial biodiversity," Nature, Nature, vol. 520(7545), pages 45-50, April.
    32. Peter Tschofen & Inês L. Azevedo & Nicholas Z. Muller, 2019. "Fine particulate matter damages and value added in the US economy," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(40), pages 19857-19862, October.
    33. Mark A. Andor & Manuel Frondel & Stephan Sommer, 2018. "Equity and the willingness to pay for green electricity in Germany," Nature Energy, Nature, vol. 3(10), pages 876-881, October.
    34. Walker, Gordon & Devine-Wright, Patrick & Hunter, Sue & High, Helen & Evans, Bob, 2010. "Trust and community: Exploring the meanings, contexts and dynamics of community renewable energy," Energy Policy, Elsevier, vol. 38(6), pages 2655-2663, June.
    35. Mueller, Christoph Emanuel & Keil, Silke Inga & Bauer, Christian, 2017. "Effects of spatial proximity to proposed high-voltage transmission lines: Evidence from a natural experiment in Lower Saxony," Energy Policy, Elsevier, vol. 111(C), pages 137-147.
    36. Chapman, Andrew J. & McLellan, Benjamin C. & Tezuka, Tetsuo, 2018. "Prioritizing mitigation efforts considering co-benefits, equity and energy justice: Fossil fuel to renewable energy transition pathways," Applied Energy, Elsevier, vol. 219(C), pages 187-198.
    37. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2019. "Distributional trade-offs between regionally equitable and cost-efficient allocation of renewable electricity generation," Applied Energy, Elsevier, vol. 254(C).
    38. Lehr, Ulrike & Lutz, Christian & Edler, Dietmar, 2012. "Green jobs? Economic impacts of renewable energy in Germany," Energy Policy, Elsevier, vol. 47(C), pages 358-364.
    39. Trutnevyte, Evelina, 2016. "Does cost optimization approximate the real-world energy transition?," Energy, Elsevier, vol. 106(C), pages 182-193.
    40. Pietzcker, Robert & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," EconStor Preprints 222579, ZBW - Leibniz Information Centre for Economics, revised 2021.
    41. Meyerhoff, Jürgen & Ohl, Cornelia & Hartje, Volkmar, 2010. "Landscape externalities from onshore wind power," Energy Policy, Elsevier, vol. 38(1), pages 82-92, January.
    42. Healy, Noel & Barry, John, 2017. "Politicizing energy justice and energy system transitions: Fossil fuel divestment and a “just transition”," Energy Policy, Elsevier, vol. 108(C), pages 451-459.
    43. Malik, Aman & Bertram, Christoph & Kriegler, Elmar & Luderer, Gunnar, 2021. "Climate policy accelerates structural changes in energy employment," Energy Policy, Elsevier, vol. 159(C).
    44. Norman J. Glickman & Douglas P. Woodward, 1988. "The Location of Foreign Direct Investment in the United States: Patterns and Determinants," International Regional Science Review, , vol. 11(2), pages 137-154, August.
    45. Trutnevyte, Evelina, 2013. "EXPANSE methodology for evaluating the economic potential of renewable energy from an energy mix perspective," Applied Energy, Elsevier, vol. 111(C), pages 593-601.
    46. E. Downey Brill, Jr. & Shoou-Yuh Chang & Lewis D. Hopkins, 1982. "Modeling to Generate Alternatives: The HSJ Approach and an Illustration Using a Problem in Land Use Planning," Management Science, INFORMS, vol. 28(3), pages 221-235, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Cost-effective options and regional interdependencies of reaching a low-carbon European electricity system in 2035," Energy, Elsevier, vol. 282(C).
    2. Lonergan, Katherine Emma & Suter, Nicolas & Sansavini, Giovanni, 2023. "Energy systems modelling for just transitions," Energy Policy, Elsevier, vol. 183(C).
    3. Wen, Xin & Heinisch, Verena & Müller, Jonas & Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Comparison of statistical and optimization models for projecting future PV installations at a sub-national scale," Energy, Elsevier, vol. 285(C).
    4. Onodera, Hiroaki & Delage, Rémi & Nakata, Toshihiko, 2024. "The role of regional renewable energy integration in electricity decarbonization—A case study of Japan," Applied Energy, Elsevier, vol. 363(C).
    5. Többen, Johannes & Banning, Maximilian & Hembach-Stunden, Katharina & Stöver, Britta & Ulrich, Philip & Schwab, Thomas, 2023. "Energising EU Cohesion: Powering up lagging regions in the renewable energy transition," MPRA Paper 119374, University Library of Munich, Germany.
    6. Jin, Yi & Yang, Jialiang & Feng, Cuiyang & Li, Yingzhu, 2024. "The employment impacts of fossil fuel trade across cities in China: A telecoupling perspective," Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Cost-effective options and regional interdependencies of reaching a low-carbon European electricity system in 2035," Energy, Elsevier, vol. 282(C).
    2. McKenna, Russell & Weinand, Jann Michael & Mulalic, Ismir & Petrovic, Stefan & Mainzer, Kai & Preis, Tobias & Moat, Helen Susannah, 2020. "Improving renewable energy resource assessments by quantifying landscape beauty," Working Paper Series in Production and Energy 43, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    3. Schumacher, K. & Krones, F. & McKenna, R. & Schultmann, F., 2019. "Public acceptance of renewable energies and energy autonomy: A comparative study in the French, German and Swiss Upper Rhine region," Energy Policy, Elsevier, vol. 126(C), pages 315-332.
    4. McKenna, R. & Mulalic, I. & Soutar, I. & Weinand, J.M. & Price, J. & Petrović, S. & Mainzer, K., 2022. "Exploring trade-offs between landscape impact, land use and resource quality for onshore variable renewable energy: an application to Great Britain," Energy, Elsevier, vol. 250(C).
    5. Michaela Makešová & Michaela Valentová, 2021. "The Concept of Multiple Impacts of Renewable Energy Sources: A Critical Review," Energies, MDPI, vol. 14(11), pages 1-21, May.
    6. Tsani, Tsamara & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Quantifying social factors for onshore wind planning – A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    7. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Beyond the triangle of renewable energy acceptance: The five dimensions of domestic hydrogen acceptance," Applied Energy, Elsevier, vol. 324(C).
    8. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    9. Silva, Felipe L.C. & Souza, Reinaldo C. & Cyrino Oliveira, Fernando L. & Lourenco, Plutarcho M. & Calili, Rodrigo F., 2018. "A bottom-up methodology for long term electricity consumption forecasting of an industrial sector - Application to pulp and paper sector in Brazil," Energy, Elsevier, vol. 144(C), pages 1107-1118.
    10. Price, James & Keppo, Ilkka, 2017. "Modelling to generate alternatives: A technique to explore uncertainty in energy-environment-economy models," Applied Energy, Elsevier, vol. 195(C), pages 356-369.
    11. Berntsen, Philip B. & Trutnevyte, Evelina, 2017. "Ensuring diversity of national energy scenarios: Bottom-up energy system model with Modeling to Generate Alternatives," Energy, Elsevier, vol. 126(C), pages 886-898.
    12. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    13. Astrid Buchmayr & Luc Van Ootegem & Jo Dewulf & Elsy Verhofstadt, 2021. "Understanding Attitudes towards Renewable Energy Technologies and the Effect of Local Experiences," Energies, MDPI, vol. 14(22), pages 1-23, November.
    14. Colvin, R.M. & Przybyszewski, E., 2022. "Local residents' policy preferences in an energy contested region – The Upper Hunter, Australia," Energy Policy, Elsevier, vol. 162(C).
    15. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2019. "Distributional trade-offs between regionally equitable and cost-efficient allocation of renewable electricity generation," Applied Energy, Elsevier, vol. 254(C).
    16. Kanberger, Elke D. & Luigs, Theresa & Ziegler, Andreas, 2024. "The relevance of proximity and work-related experience for the individual support for the expansion of power plants: An empirical analysis of wind, coal, and nuclear energy," Energy Policy, Elsevier, vol. 192(C).
    17. David Huckebrink & Valentin Bertsch, 2021. "Integrating Behavioural Aspects in Energy System Modelling—A Review," Energies, MDPI, vol. 14(15), pages 1-26, July.
    18. Hübner, Gundula & Leschinger, Valentin & Müller, Florian J.Y. & Pohl, Johannes, 2023. "Broadening the social acceptance of wind energy – An Integrated Acceptance Model," Energy Policy, Elsevier, vol. 173(C).
    19. McKenna, R. & Bertsch, V. & Mainzer, K. & Fichtner, W., 2018. "Combining local preferences with multi-criteria decision analysis and linear optimization to develop feasible energy concepts in small communities," European Journal of Operational Research, Elsevier, vol. 268(3), pages 1092-1110.
    20. Oei, Pao-Yu & Hermann, Hauke & Herpich, Philipp & Holtemöller, Oliver & Lünenbürger, Benjamin & Schult, Christoph, 2020. "Coal phase-out in Germany – Implications and policies for affected regions," Energy, Elsevier, vol. 196(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37946-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.