IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipbs0306261924016349.html
   My bibliography  Save this article

Decarbonizing the inland container fleet with carbon cap-and-trade scheme

Author

Listed:
  • Tan, Zhijia
  • Shao, Shuai
  • Zhang, Di
  • Shang, Wen-Long
  • Ochieng, Washington
  • Han, Yi

Abstract

Market-based measures, like the carbon cap-and-trade (CCT) scheme, can effectively reduce emissions and promote green technology by internalizing the external costs in the shipping industry. Under the CCT scheme, the government sets the quantity commitment of carbon emissions for a unit of shipping work, and the excessive quantity must be traded from the inner shipping market. To cope with carbon regulation, carriers can adjust their ship deployment plan and adopt new engine technologies to support low-carbon fuels. This paper proposes a bi-level programming model to investigate the effects of the CCT scheme on the decisions of carriers in a competitive inland container shipping network. At the upper level, carriers adjust their own ship deployment plan and the choice of technology and fuel type. At the lower level, the shippers between different origins and destinations choose the shipping lines with the given ship deployment plans of carriers. Two kinds of equilibrium are considered in the proposed problem: the competitive equilibrium of carriers on freight shipment in the inland shipping network and the trading equilibrium of carbon quotas. The former equilibrium can be captured by a traffic assignment model in a similar transit transportation network, and the latter equilibrium follows the idea of the demand–supply equilibrium of carbon quotas in the traditional market. The two equilibria interact since the freight distribution affects the shipping revenue of each ship and the trading equilibrium is related to the total cost of the ship. The properties of the optimal choice of technology and fuel type are theoretically studied. We find that the optimal choice of fuel technology for each ship assigned to any shipping line at any given CCT must be Pareto optimal in the sense of cost-related and emission-relative measures. Based on the result, the optimal solution of the proposed model can be calculated by a sampling-based method. Numerical examples based on the Yangtze River are further adopted to illustrate the proposed model and conclusions.

Suggested Citation

  • Tan, Zhijia & Shao, Shuai & Zhang, Di & Shang, Wen-Long & Ochieng, Washington & Han, Yi, 2024. "Decarbonizing the inland container fleet with carbon cap-and-trade scheme," Applied Energy, Elsevier, vol. 376(PB).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016349
    DOI: 10.1016/j.apenergy.2024.124251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924016349
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhuge, Dan & Wang, Shuaian & Wang, David Z.W., 2021. "A joint liner ship path, speed and deployment problem under emission reduction measures," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 155-173.
    2. Yan, Xinping & He, Yapeng & Fan, Ailong, 2023. "Carbon footprint prediction considering the evolution of alternative fuels and cargo: A case study of Yangtze river ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    3. Cominetti, Roberto & Dose, Valerio & Scarsini, Marco, 2024. "Phase transitions of the price-of-anarchy function in multi-commodity routing games," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
    4. Kuppusamy, Saravanan & Magazine, Michael J. & Rao, Uday, 2023. "Impact of downstream emissions cap-and-trade policy on electric vehicle and clean utility adoption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    5. Stella Dafermos, 1980. "Traffic Equilibrium and Variational Inequalities," Transportation Science, INFORMS, vol. 14(1), pages 42-54, February.
    6. Jonas Meckling & Thomas Sterner & Gernot Wagner, 2017. "Policy sequencing toward decarbonization," Nature Energy, Nature, vol. 2(12), pages 918-922, December.
    7. Shang, Wen-Long & Chen, Yishui & Yu, Qing & Song, Xuewang & Chen, Yanyan & Ma, Xiaolei & Chen, Xiqun & Tan, Zhijia & Huang, Jianling & Ochieng, Washington, 2023. "Spatio-temporal analysis of carbon footprints for urban public transport systems based on smart card data," Applied Energy, Elsevier, vol. 352(C).
    8. Tong, C. O. & Wong, S. C., 2000. "A predictive dynamic traffic assignment model in congested capacity-constrained road networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(8), pages 625-644, November.
    9. Wu, Chun & Chen, Xingying & Hua, Haochen & Yu, Kun & Gan, Lei & Shen, Jun & Ding, Yi, 2024. "Peer-to-peer energy trading optimization for community prosumers considering carbon cap-and-trade," Applied Energy, Elsevier, vol. 358(C).
    10. Shao, Shuai & Tan, Zhijia & Liu, Zhiyuan & Shang, Wenlong, 2022. "Balancing the GHG emissions and operational costs for a mixed fleet of electric buses and diesel buses," Applied Energy, Elsevier, vol. 328(C).
    11. Pietzcker, Robert C. & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," Applied Energy, Elsevier, vol. 293(C).
    12. Tan, Zhijia & Zeng, Xianyang & Shao, Shuai & Chen, Jihong & Wang, Hua, 2022. "Scrubber installation and green fuel for inland river ships with non-identical streamflow," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    13. Xiaoshuai Fan & Kanglin Chen & Ying-Ju Chen, 2023. "Is Price Commitment a Better Solution to Control Carbon Emissions and Promote Technology Investment?," Management Science, INFORMS, vol. 69(1), pages 325-341, January.
    14. Lo, Hong K. & Chen, Anthony, 2000. "Traffic equilibrium problem with route-specific costs: formulation and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 34(6), pages 493-513, August.
    15. Sotiria Lagouvardou & Benjamin Lagemann & Harilaos N. Psaraftis & Elizabeth Lindstad & Stein Ove Erikstad, 2023. "Marginal abatement cost of alternative marine fuels and the role of market-based measures," Nature Energy, Nature, vol. 8(11), pages 1209-1220, November.
    16. Sotiria Lagouvardou & Benjamin Lagemann & Harilaos N. Psaraftis & Elizabeth Lindstad & Stein Ove Erikstad, 2023. "Author Correction: Marginal abatement cost of alternative marine fuels and the role of market-based measures," Nature Energy, Nature, vol. 8(12), pages 1417-1417, December.
    17. Wang, Lifen & Liang, Chengji & Shi, Jian & Molavi, Anahita & Lim, Gino & Zhang, Yue, 2021. "A bilevel hybrid economic approach for optimal deployment of onshore power supply in maritime ports," Applied Energy, Elsevier, vol. 292(C).
    18. Flachsland, Christian & Brunner, Steffen & Edenhofer, Ottmar & Creutzig, Felix, 2011. "Climate policies for road transport revisited (II): Closing the policy gap with cap-and-trade," Energy Policy, Elsevier, vol. 39(4), pages 2100-2110, April.
    19. Ling-Chin, Janie & Roskilly, Anthony P., 2016. "Investigating the implications of a new-build hybrid power system for Roll-on/Roll-off cargo ships from a sustainability perspective – A life cycle assessment case study," Applied Energy, Elsevier, vol. 181(C), pages 416-434.
    20. Wang, Xinyu & Sethi, Suresh P. & Chang, Shuhua, 2022. "Pollution abatement using cap-and-trade in a dynamic supply chain and its coordination," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    21. Joaquín de Cea & Enrique Fernández, 1993. "Transit Assignment for Congested Public Transport Systems: An Equilibrium Model," Transportation Science, INFORMS, vol. 27(2), pages 133-147, May.
    22. Stolz, B. & Held, M. & Georges, G. & Boulouchos, K., 2021. "The CO2 reduction potential of shore-side electricity in Europe," Applied Energy, Elsevier, vol. 285(C).
    23. Zhen, Lu & Wu, Yiwei & Wang, Shuaian & Laporte, Gilbert, 2020. "Green technology adoption for fleet deployment in a shipping network," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 388-410.
    24. Chen, Xinqiang & Lv, Siying & Shang, Wen-long & Wu, Huafeng & Xian, Jiangfeng & Song, Chengcheng, 2024. "Ship energy consumption analysis and carbon emission exploitation via spatial-temporal maritime data," Applied Energy, Elsevier, vol. 360(C).
    25. Fan, Lixian & Gu, Bingmei & Luo, Meifeng, 2020. "A cost-benefit analysis of fuel-switching vs. hybrid scrubber installation: A container route through the Chinese SECA case," Transport Policy, Elsevier, vol. 99(C), pages 336-344.
    26. Sanjith Gopalakrishnan & Daniel Granot & Frieda Granot & Greys Sošić & Hailong Cui, 2021. "Incentives and Emission Responsibility Allocation in Supply Chains," Management Science, INFORMS, vol. 67(7), pages 4172-4190, July.
    27. Ding, Hongxing & Yang, Hai & Qin, Xiaoran & Xu, Hongli, 2023. "Credit charge-cum-reward scheme for green multi-modal mobility," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    28. Wang, Tingsong & Cheng, Peiyue & Zhen, Lu, 2023. "Green development of the maritime industry: Overview, perspectives, and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    29. Yang, Hai & Wang, Xiaolei, 2011. "Managing network mobility with tradable credits," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 580-594, March.
    30. Pietzcker, Robert & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," EconStor Preprints 222579, ZBW - Leibniz Information Centre for Economics, revised 2021.
    31. Gu, Yewen & Wallace, Stein W., 2017. "Scrubber: a potentially overestimated compliance method for the Emission Control Areas - The importance of involving a ship's sailing pattern in the evaluation," Discussion Papers 2017/13, Norwegian School of Economics, Department of Business and Management Science.
    32. Zhang, Chao & Chen, Xiaojun & Sumalee, Agachai, 2011. "Robust Wardrop's user equilibrium assignment under stochastic demand and supply: Expected residual minimization approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 534-552, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ming & Zeng, Xianyang & Tan, Zhijia, 2024. "Joint decision of green technology adoption and sailing pattern for a coastal ship under ECAs," Transport Policy, Elsevier, vol. 146(C), pages 102-113.
    2. Zeng, Xianyang & Tan, Zhijia & Zhang, Ming & Wang, Tingsong, 2024. "Scrubber installation of inland container ships: Discrepancy between government and carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    3. Wang, Jinggai & Li, Huanhuan & Yang, Zaili & Ge, Ying-En, 2024. "Shore power for reduction of shipping emission in port: A bibliometric analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    4. Shao, Shuai & Xu, Min & Tan, Zhijia & Zhen, Lu, 2024. "Ship deployment problem with green technology adoption for an inland river carrier under non-identical streamflow and speed limits," Transport Policy, Elsevier, vol. 157(C), pages 46-56.
    5. Tan, Zhijia & Zeng, Xianyang & Shao, Shuai & Chen, Jihong & Wang, Hua, 2022. "Scrubber installation and green fuel for inland river ships with non-identical streamflow," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    6. Lu, Chung-Cheng & Mahmassani, Hani S. & Zhou, Xuesong, 2009. "Equivalent gap function-based reformulation and solution algorithm for the dynamic user equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 345-364, March.
    7. Haywood, Luke & Jakob, Michael, 2023. "The role of the emissions trading scheme 2 in the policy mix to decarbonize road transport in the European Union," Transport Policy, Elsevier, vol. 139(C), pages 99-108.
    8. Chen, Peng & Nie, Yu (Marco), 2013. "Bicriterion shortest path problem with a general nonadditive cost," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 419-435.
    9. Wang, Xiaolei & Ouyang, Yanfeng & Yang, Hai & Bai, Yun, 2013. "Optimal biofuel supply chain design under consumption mandates with renewable identification numbers," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 158-171.
    10. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    11. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    12. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    13. Younes Hamdouch & Siriphong Lawphongpanich, 2010. "Congestion Pricing for Schedule-Based Transit Networks," Transportation Science, INFORMS, vol. 44(3), pages 350-366, August.
    14. Martina Ricci & Marcello Benvenuto & Stefano Gino Mosele & Roberto Pacciani & Michele Marconcini, 2022. "Predicting the Impact of Compressor Flexibility Improvements on Heavy-Duty Gas Turbines for Minimum and Base Load Conditions," Energies, MDPI, vol. 15(20), pages 1-14, October.
    15. Hänsel, Martin C. & Franks, Max & Kalkuhl, Matthias & Edenhofer, Ottmar, 2022. "Optimal carbon taxation and horizontal equity: A welfare-theoretic approach with application to German household data," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    16. Pashchenko, Dmitry & Mustafin, Ravil & Karpilov, Igor, 2022. "Ammonia-fired chemically recuperated gas turbine: Thermodynamic analysis of cycle and recuperation system," Energy, Elsevier, vol. 252(C).
    17. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Mariusz Pyra, 2023. "Simulation of the Progress of the Decarbonization Process in Poland’s Road Transport Sector," Energies, MDPI, vol. 16(12), pages 1-21, June.
    19. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    20. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.