IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/115504.html
   My bibliography  Save this paper

Implementing a highly adaptable method for the multi-objective optimisation of energy systems

Author

Listed:
  • Finke, Jonas
  • Bertsch, Valentin

Abstract

In order to mitigate climate change, the energy sector undergoes a transformation towards a climate-neutral future based on renewable energy sources. Energy system models generate insights and support decision making for this transformation. In the face of, e.g., growingly complex and important environmental assessments and stakeholder structures, considering multiple objectives in these models becomes essential to realistically reflect existing interests. However, there is a lack of highly adaptable energy system models incorporating multiple objectives. We present an implementation of the augmented epsilon-constraint method with the highly adaptable energy system optimisation framework Backbone. It enables the simultaneous optimisation of multiple objectives, such as the minimisation of costs, CO2 emissions or self-sufficiency for a broad range of energy systems including different sectors and scales. For this purpose, new objective functions and constraints are implemented in Backbone. They are used by an external algorithm in a sequence of parallelised optimisations to cope with the complexity of real-world applications. The method is adaptable to further objectives and scalable to large and complex systems. Applications to the Western and Southern European power sector in 2050 and a sector-coupled mixed- integer household-level model demonstrate its benefits and adaptability. Pareto fronts, technology use and trade-offs are analysed and quantified. In the European power sector, emission reductions of up to 90 % can be achieved at marginal CO2 abatement costs of below 100 EUR/(t CO2). For the household, energy imports from the public grids can be reduced by 70 % at 20 % higher cost and average cost of self-sufficiency of 2.6 ct/kWh. We expect that the presented methods and models reveal new valuable insights to modellers and decision makers.

Suggested Citation

  • Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:115504
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/115504/1/MPRA_paper_115504.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matteo Giacomo Prina & Giampaolo Manzolini & David Moser & Roberto Vaccaro & Wolfram Sparber, 2020. "Multi-Objective Optimization Model EPLANopt for Energy Transition Analysis and Comparison with Climate-Change Scenarios," Energies, MDPI, vol. 13(12), pages 1-22, June.
    2. Niina Helistö & Juha Kiviluoma & Jussi Ikäheimo & Topi Rasku & Erkka Rinne & Ciara O’Dwyer & Ran Li & Damian Flynn, 2019. "Backbone—An Adaptable Energy Systems Modelling Framework," Energies, MDPI, vol. 12(17), pages 1-34, September.
    3. Hombach, Laura Elisabeth & Walther, Grit, 2015. "Pareto-efficient legal regulation of the (bio)fuel market using a bi-objective optimization model," European Journal of Operational Research, Elsevier, vol. 245(1), pages 286-295.
    4. Hauser, Philipp & Heinrichs, Heidi U. & Gillessen, Bastian & Müller, Theresa, 2018. "Implications of diversification strategies in the European natural gas market for the German energy system," Energy, Elsevier, vol. 151(C), pages 442-454.
    5. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    6. Ingela Tietze & Lukas Lazar & Heidi Hottenroth & Steffen Lewerenz, 2020. "LAEND: A Model for Multi-Objective Investment Optimisation of Residential Quarters Considering Costs and Environmental Impacts," Energies, MDPI, vol. 13(3), pages 1-22, February.
    7. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    8. Mahbub, Md Shahriar & Cozzini, Marco & Østergaard, Poul Alberg & Alberti, Fabrizio, 2016. "Combining multi-objective evolutionary algorithms and descriptive analytical modelling in energy scenario design," Applied Energy, Elsevier, vol. 164(C), pages 140-151.
    9. A Morton & B Fasolo, 2009. "Behavioural decision theory for multi-criteria decision analysis: a guided tour," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 268-275, February.
    10. Niknam, Taher & Meymand, Hamed Zeinoddini & Mojarrad, Hasan Doagou, 2011. "An efficient algorithm for multi-objective optimal operation management of distribution network considering fuel cell power plants," Energy, Elsevier, vol. 36(1), pages 119-132.
    11. Samsatli, Sheila & Samsatli, Nouri J., 2018. "A multi-objective MILP model for the design and operation of future integrated multi-vector energy networks capturing detailed spatio-temporal dependencies," Applied Energy, Elsevier, vol. 220(C), pages 893-920.
    12. Schwartz, Yair & Raslan, Rokia & Mumovic, Dejan, 2016. "Implementing multi objective genetic algorithm for life cycle carbon footprint and life cycle cost minimisation: A building refurbishment case study," Energy, Elsevier, vol. 97(C), pages 58-68.
    13. Henning, Hans-Martin & Palzer, Andreas, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—Part I: Methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1003-1018.
    14. Mehigan, L. & Deane, J.P. & Gallachóir, B.P.Ó. & Bertsch, V., 2018. "A review of the role of distributed generation (DG) in future electricity systems," Energy, Elsevier, vol. 163(C), pages 822-836.
    15. Dufo-López, Rodolfo & Bernal-Agustín, José L. & Yusta-Loyo, José M. & Domínguez-Navarro, José A. & Ramírez-Rosado, Ignacio J. & Lujano, Juan & Aso, Ismael, 2011. "Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV–wind–diesel systems with batteries storage," Applied Energy, Elsevier, vol. 88(11), pages 4033-4041.
    16. Helistö, Niina & Kiviluoma, Juha & Morales-España, Germán & O’Dwyer, Ciara, 2021. "Impact of operational details and temporal representations on investment planning in energy systems dominated by wind and solar," Applied Energy, Elsevier, vol. 290(C).
    17. Wierzbowski, Michal & Lyzwa, Wojciech & Musial, Izabela, 2016. "MILP model for long-term energy mix planning with consideration of power system reserves," Applied Energy, Elsevier, vol. 169(C), pages 93-111.
    18. Rasku, Topi & Miettinen, Jari & Rinne, Erkka & Kiviluoma, Juha, 2020. "Impact of 15-day energy forecasts on the hydro-thermal scheduling of a future Nordic power system," Energy, Elsevier, vol. 192(C).
    19. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    20. Möst, Dominik & Keles, Dogan, 2010. "A survey of stochastic modelling approaches for liberalised electricity markets," European Journal of Operational Research, Elsevier, vol. 207(2), pages 543-556, December.
    21. Tobias Junne & Sonja Simon & Jens Buchgeister & Maximilian Saiger & Manuel Baumann & Martina Haase & Christina Wulf & Tobias Naegler, 2020. "Environmental Sustainability Assessment of Multi-Sectoral Energy Transformation Pathways: Methodological Approach and Case Study for Germany," Sustainability, MDPI, vol. 12(19), pages 1-28, October.
    22. Yamchi, Hamid Bakhshi & Safari, Amin & Guerrero, Josep M., 2021. "A multi-objective mixed integer linear programming model for integrated electricity-gas network expansion planning considering the impact of photovoltaic generation," Energy, Elsevier, vol. 222(C).
    23. Fitiwi, Desta Z. & Lynch, Muireann & Bertsch, Valentin, 2020. "Power system impacts of community acceptance policies for renewable energy deployment under storage cost uncertainty," Renewable Energy, Elsevier, vol. 156(C), pages 893-912.
    24. Elliston, Ben & Riesz, Jenny & MacGill, Iain, 2016. "What cost for more renewables? The incremental cost of renewable generation – An Australian National Electricity Market case study," Renewable Energy, Elsevier, vol. 95(C), pages 127-139.
    25. Kaisa Miettinen & Jussi Hakanen & Dmitry Podkopaev, 2016. "Interactive Nonlinear Multiobjective Optimization Methods," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 927-976, Springer.
    26. Warren B. Powell & Abraham George & Hugo Simão & Warren Scott & Alan Lamont & Jeffrey Stewart, 2012. "SMART: A Stochastic Multiscale Model for the Analysis of Energy Resources, Technology, and Policy," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 665-682, November.
    27. Prina, Matteo Giacomo & Lionetti, Matteo & Manzolini, Giampaolo & Sparber, Wolfram & Moser, David, 2019. "Transition pathways optimization methodology through EnergyPLAN software for long-term energy planning," Applied Energy, Elsevier, vol. 235(C), pages 356-368.
    28. Pietzcker, Robert C. & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," Applied Energy, Elsevier, vol. 293(C).
    29. Millward-Hopkins, Joel & Purnell, Phil, 2019. "Circulating blame in the circular economy: The case of wood-waste biofuels and coal ash," Energy Policy, Elsevier, vol. 129(C), pages 168-172.
    30. Palzer, Andreas & Henning, Hans-Martin, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part II: Results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1019-1034.
    31. David Huckebrink & Valentin Bertsch, 2021. "Integrating Behavioural Aspects in Energy System Modelling—A Review," Energies, MDPI, vol. 14(15), pages 1-26, July.
    32. DeCarolis, Joseph F., 2011. "Using modeling to generate alternatives (MGA) to expand our thinking on energy futures," Energy Economics, Elsevier, vol. 33(2), pages 145-152, March.
    33. Ikäheimo, Jussi & Weiss, Robert & Kiviluoma, Juha & Pursiheimo, Esa & Lindroos, Tomi J., 2022. "Impact of power-to-gas on the cost and design of the future low-carbon urban energy system," Applied Energy, Elsevier, vol. 305(C).
    34. Sadiqa, Ayesha & Gulagi, Ashish & Breyer, Christian, 2018. "Energy transition roadmap towards 100% renewable energy and role of storage technologies for Pakistan by 2050," Energy, Elsevier, vol. 147(C), pages 518-533.
    35. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2012. "Economic and environmental analysis of power generation expansion in Japan considering Fukushima nuclear accident using a multi-objective optimization model," Energy, Elsevier, vol. 44(1), pages 986-995.
    36. Gils, Hans Christian & Scholz, Yvonne & Pregger, Thomas & Luca de Tena, Diego & Heide, Dominik, 2017. "Integrated modelling of variable renewable energy-based power supply in Europe," Energy, Elsevier, vol. 123(C), pages 173-188.
    37. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2016. "Optimising urban energy systems: Simultaneous system sizing, operation and district heating network layout," Energy, Elsevier, vol. 116(P1), pages 619-636.
    38. Ren, Hongbo & Zhou, Weisheng & Nakagami, Ken'ichi & Gao, Weijun & Wu, Qiong, 2010. "Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 87(12), pages 3642-3651, December.
    39. Zangeneh, Ali & Jadid, Shahram & Rahimi-Kian, Ashkan, 2011. "A fuzzy environmental-technical-economic model for distributed generation planning," Energy, Elsevier, vol. 36(5), pages 3437-3445.
    40. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2017. "Decarbonizing the electricity grid: The impact on urban energy systems, distribution grids and district heating potential," Applied Energy, Elsevier, vol. 191(C), pages 125-140.
    41. Komušanac, Ivan & Ćosić, Boris & Duić, Neven, 2016. "Impact of high penetration of wind and solar PV generation on the country power system load: The case study of Croatia," Applied Energy, Elsevier, vol. 184(C), pages 1470-1482.
    42. Viktor Slednev & Valentin Bertsch & Wolf Fichtner, 2017. "A Multi-objective Time Segmentation Approach for Power Generation and Transmission Models," Operations Research Proceedings, in: Karl Franz Dörner & Ivana Ljubic & Georg Pflug & Gernot Tragler (ed.), Operations Research Proceedings 2015, pages 707-714, Springer.
    43. Samsatli, Sheila & Samsatli, Nouri J. & Shah, Nilay, 2015. "BVCM: A comprehensive and flexible toolkit for whole system biomass value chain analysis and optimisation – Mathematical formulation," Applied Energy, Elsevier, vol. 147(C), pages 131-160.
    44. Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.
    45. Hunter, Kevin & Sreepathi, Sarat & DeCarolis, Joseph F., 2013. "Modeling for insight using Tools for Energy Model Optimization and Analysis (Temoa)," Energy Economics, Elsevier, vol. 40(C), pages 339-349.
    46. DeCarolis, Joseph F. & Hunter, Kevin & Sreepathi, Sarat, 2012. "The case for repeatable analysis with energy economy optimization models," Energy Economics, Elsevier, vol. 34(6), pages 1845-1853.
    47. Prina, Matteo Giacomo & Cozzini, Marco & Garegnani, Giulia & Manzolini, Giampaolo & Moser, David & Filippi Oberegger, Ulrich & Pernetti, Roberta & Vaccaro, Roberto & Sparber, Wolfram, 2018. "Multi-objective optimization algorithm coupled to EnergyPLAN software: The EPLANopt model," Energy, Elsevier, vol. 149(C), pages 213-221.
    48. Maryegli Fuss & Lei Xu, 2021. "Unintended Environmental Impacts at Local and Global Scale—Trade-Offs of a Low-Carbon Electricity System," Springer Books, in: Dominik Möst & Steffi Schreiber & Andrea Herbst & Martin Jakob & Angelo Martino & Witold-Roger Pogan (ed.), The Future European Energy System, chapter 0, pages 237-255, Springer.
    49. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    50. Pfenninger, Stefan & DeCarolis, Joseph & Hirth, Lion & Quoilin, Sylvain & Staffell, Iain, 2017. "The importance of open data and software: Is energy research lagging behind?," Energy Policy, Elsevier, vol. 101(C), pages 211-215.
    51. Margaret M. Wiecek & Matthias Ehrgott & Alexander Engau, 2016. "Continuous Multiobjective Programming," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 739-815, Springer.
    52. Prina, Matteo Giacomo & Casalicchio, Valeria & Kaldemeyer, Cord & Manzolini, Giampaolo & Moser, David & Wanitschke, Alexander & Sparber, Wolfram, 2020. "Multi-objective investment optimization for energy system models in high temporal and spatial resolution," Applied Energy, Elsevier, vol. 264(C).
    53. Pietzcker, Robert & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," EconStor Preprints 222579, ZBW - Leibniz Information Centre for Economics, revised 2021.
    54. Roddis, Philippa & Carver, Stephen & Dallimer, Martin & Norman, Paul & Ziv, Guy, 2018. "The role of community acceptance in planning outcomes for onshore wind and solar farms: An energy justice analysis," Applied Energy, Elsevier, vol. 226(C), pages 353-364.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Finke, Jonas & Bertsch, Valentin, 2023. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," Applied Energy, Elsevier, vol. 332(C).
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    4. Prina, Matteo Giacomo & Casalicchio, Valeria & Kaldemeyer, Cord & Manzolini, Giampaolo & Moser, David & Wanitschke, Alexander & Sparber, Wolfram, 2020. "Multi-objective investment optimization for energy system models in high temporal and spatial resolution," Applied Energy, Elsevier, vol. 264(C).
    5. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    7. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    8. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    9. Md. Nasimul Islam Maruf, 2019. "Sector Coupling in the North Sea Region—A Review on the Energy System Modelling Perspective," Energies, MDPI, vol. 12(22), pages 1-35, November.
    10. Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.
    11. Prina, Matteo Giacomo & Lionetti, Matteo & Manzolini, Giampaolo & Sparber, Wolfram & Moser, David, 2019. "Transition pathways optimization methodology through EnergyPLAN software for long-term energy planning," Applied Energy, Elsevier, vol. 235(C), pages 356-368.
    12. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    13. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    14. Borasio, M. & Moret, S., 2022. "Deep decarbonisation of regional energy systems: A novel modelling approach and its application to the Italian energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    15. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Finke, Jonas & Bertsch, Valentin & Di Cosmo, Valeria, 2023. "Exploring the feasibility of Europe’s renewable expansion plans based on their profitability in the market," Energy Policy, Elsevier, vol. 177(C).
    17. Koppelaar, Rembrandt H.E.M. & Keirstead, James & Shah, Nilay & Woods, Jeremy, 2016. "A review of policy analysis purpose and capabilities of electricity system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1531-1544.
    18. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    19. Bellocchi, Sara & Gambini, Marco & Manno, Michele & Stilo, Tommaso & Vellini, Michela, 2018. "Positive interactions between electric vehicles and renewable energy sources in CO2-reduced energy scenarios: The Italian case," Energy, Elsevier, vol. 161(C), pages 172-182.
    20. Bellocchi, Sara & Manno, Michele & Noussan, Michel & Prina, Matteo Giacomo & Vellini, Michela, 2020. "Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system," Energy, Elsevier, vol. 196(C).

    More about this item

    Keywords

    Energy system modeling; Multi-objective optimization; Renewable energy; Energy planning; Pareto front; Trade-off;
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:115504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.