IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3583-d351570.html
   My bibliography  Save this article

Sensorless Active and Reactive Control for DFIG Wind Turbines Using Opposition-Based Learning Technique

Author

Listed:
  • Ali Mohamed Eltamaly

    (Sustainable Energy Technologies Center, King Saud University, Riyadh 11421, Saudi Arabia
    Electrical Engineering Department, Mansoura University, Mansoura 35516, Egypt
    K.A. CARE Energy Research and Innovation Center, Riyadh 11451, Saudi Arabia)

  • Mamdooh Al-Saud

    (Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Khairy Sayed

    (Electrical Engineering Department, Faculty of Engineering, Sohag University, Sohag 82524, Egypt)

  • Ahmed G. Abo-Khalil

    (Department of Electrical Engineering, College of Engineering, Majmaah University, Almajmaah 11952, Saudi Arabia
    Department of Electrical Engineering, College of Engineering, Assuit University, Assuit 71515, Egypt)

Abstract

In this paper, a wind speed sensorless control method for doubly-fed induction generator (DFIG) control in wind energy systems is proposed. This method is based on using opposition-based learning (OBL) in optimizing the parameters of the support vector regression (SVR) algorithm. These parameters are tuned by applying particle swarm optimization (PSO) method. As a general rule, wind speed measurements are usually done using an anemometer. The measured wind speed by the anemometer is taken at the level of the blades. In a high-power wind turbine, the blade diameter is very large which makes the measurement of the wind speed at a single point inaccurate. Moreover, using anemometers also increases the maintenance cost, complexity and the system cost. Therefore, estimating the wind speed in variable speed wind power systems gives a precise amount of wind speed which is then used in the generator control. The proposed method uses the generator characteristics in mapping a relationship between the generated power, rotational speed and wind speed. This process is carried on off-line and the relationship is then used online to deduce the wind speed based on the obtained relationship. Using OBL with PSO-SVR to tune the SVR parameters accelerates the process to get the optimum parameters in different wind speeds.

Suggested Citation

  • Ali Mohamed Eltamaly & Mamdooh Al-Saud & Khairy Sayed & Ahmed G. Abo-Khalil, 2020. "Sensorless Active and Reactive Control for DFIG Wind Turbines Using Opposition-Based Learning Technique," Sustainability, MDPI, vol. 12(9), pages 1-14, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3583-:d:351570
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3583/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3583/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed G. Abo-Khalil & Ali S. Alghamdi & Ali M. Eltamaly & M. S. Al-Saud & Praveen R. P. & Khairy Sayed & G. R. Bindu & Iskander Tlili, 2019. "Design of State Feedback Current Controller for Fast Synchronization of DFIG in Wind Power Generation Systems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    2. Ahmed G. Abo-Khalil & Saeed Alyami & Khairy Sayed & Ayman Alhejji, 2019. "Dynamic Modeling of Wind Turbines Based on Estimated Wind Speed under Turbulent Conditions," Energies, MDPI, vol. 12(10), pages 1-25, May.
    3. Ahmed Abo-Khalil, 2013. "Impacts of Wind Farms on Power System Stability," Chapters, in: S. M. Muyeen & Ahmed Al-Durra (ed.), Modeling and Control Aspects of Wind Power Systems, IntechOpen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Abdelrahem & Christoph Hackl & Ralph Kennel & Jose Rodriguez, 2021. "Low Sensitivity Predictive Control for Doubly-Fed Induction Generators Based Wind Turbine Applications," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    2. Ahmed G. Abo-Khalil & Ali M. Eltamaly & Praveen R.P. & Ali S. Alghamdi & Iskander Tlili, 2020. "A Sensorless Wind Speed and Rotor Position Control of PMSG in Wind Power Generation Systems," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    3. Ahmed G. Abo-Khalil & Ali S. Alghamdi, 2021. "MPPT of Permanent Magnet Synchronous Generator in Tidal Energy Systems Using Support Vector Regression," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    4. A. Padmaja & Allusivala Shanmukh & Siva Subrahmanyam Mendu & Ramesh Devarapalli & Javier Serrano González & Fausto Pedro García Márquez, 2021. "Design of Capacitive Bridge Fault Current Limiter for Low-Voltage Ride-Through Capacity Enrichment of Doubly Fed Induction Generator-Based Wind Farm," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    5. Abdulaziz Almutairi & Ahmed G. Abo-Khalil & Khairy Sayed & Naif Albagami, 2020. "MPPT for a PV Grid-Connected System to Improve Efficiency under Partial Shading Conditions," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    6. Habib Benbouhenni & Nicu Bizon & Ilhami Colak & Phatiphat Thounthong & Noureddine Takorabet, 2022. "Simplified Super Twisting Sliding Mode Approaches of the Double-Powered Induction Generator-Based Multi-Rotor Wind Turbine System," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    7. Ahmed G. Abo-Khalil & Walied Alharbi & Abdel-Rahman Al-Qawasmi & Mohammad Alobaid & Ibrahim M. Alarifi, 2021. "Maximum Power Point Tracking of PV Systems under Partial Shading Conditions Based on Opposition-Based Learning Firefly Algorithm," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    8. Ramesh Kumar Behara & Akshay Kumar Saha, 2022. "Artificial Intelligence Control System Applied in Smart Grid Integrated Doubly Fed Induction Generator-Based Wind Turbine: A Review," Energies, MDPI, vol. 15(17), pages 1-56, September.
    9. Ahmed Sobhy & Ahmed G. Abo-Khalil & Dong Lei & Tareq Salameh & Adel Merabet & Malek Alkasrawi, 2022. "Coupling DFIG-Based Wind Turbines with the Grid under Voltage Imbalance Conditions," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    10. Omar Alrumayh & Khairy Sayed & Abdulaziz Almutairi, 2023. "LVRT and Reactive Power/Voltage Support of Utility-Scale PV Power Plants during Disturbance Conditions," Energies, MDPI, vol. 16(7), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed G. Abo-Khalil & Ali S. Alghamdi, 2021. "MPPT of Permanent Magnet Synchronous Generator in Tidal Energy Systems Using Support Vector Regression," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    2. Omar Alrumayh & Khairy Sayed & Abdulaziz Almutairi, 2023. "LVRT and Reactive Power/Voltage Support of Utility-Scale PV Power Plants during Disturbance Conditions," Energies, MDPI, vol. 16(7), pages 1-20, April.
    3. Ahmed G. Abo-Khalil & Ali S. Alghamdi & Ali M. Eltamaly & M. S. Al-Saud & Praveen R. P. & Khairy Sayed & G. R. Bindu & Iskander Tlili, 2019. "Design of State Feedback Current Controller for Fast Synchronization of DFIG in Wind Power Generation Systems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    4. Ahmed G. Abo-Khalil & Saeed Alyami & Ayman Alhejji & Ahmed B. Awan, 2019. "Real-Time Reliability Monitoring of DC-Link Capacitors in Back-to-Back Converters," Energies, MDPI, vol. 12(12), pages 1-11, June.
    5. Hamid Chojaa & Aziz Derouich & Mohammed Taoussi & Seif Eddine Chehaidia & Othmane Zamzoum & Mohamed I. Mosaad & Ayman Alhejji & Mourad Yessef, 2022. "Nonlinear Control Strategies for Enhancing the Performance of DFIG-Based WECS under a Real Wind Profile," Energies, MDPI, vol. 15(18), pages 1-23, September.
    6. Ahmed Sobhy & Ahmed G. Abo-Khalil & Dong Lei & Tareq Salameh & Adel Merabet & Malek Alkasrawi, 2022. "Coupling DFIG-Based Wind Turbines with the Grid under Voltage Imbalance Conditions," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    7. Ahmed G. Abo-Khalil & Ali M. Eltamaly & Praveen R.P. & Ali S. Alghamdi & Iskander Tlili, 2020. "A Sensorless Wind Speed and Rotor Position Control of PMSG in Wind Power Generation Systems," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    8. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    9. Yingming Liu & Shuyuan Zhang & Xiaodong Wang & Hongfang Xie & Tian Cao, 2022. "Optimization of Pitch Control Parameters for a Wind Turbine Based on Tower Active Damping Control," Energies, MDPI, vol. 15(22), pages 1-22, November.
    10. Ahmed G. Abo-Khalil & Mohammad Alobaid, 2023. "Optimized Control for PMSG Wind Turbine Systems under Unbalanced and Distorted Grid Voltage Scenarios," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    11. Khairy Sayed & Ahmed G. Abo-Khalil & Ali S. Alghamdi, 2019. "Optimum Resilient Operation and Control DC Microgrid Based Electric Vehicles Charging Station Powered by Renewable Energy Sources," Energies, MDPI, vol. 12(22), pages 1-23, November.
    12. Ahmed G. Abo-Khalil & Saeed Alyami & Khairy Sayed & Ayman Alhejji, 2019. "Dynamic Modeling of Wind Turbines Based on Estimated Wind Speed under Turbulent Conditions," Energies, MDPI, vol. 12(10), pages 1-25, May.
    13. Solomon Feleke & Raavi Satish & Balamurali Pydi & Degarege Anteneh & Almoataz Y. Abdelaziz & Adel El-Shahat, 2023. "Damping of Frequency and Power System Oscillations with DFIG Wind Turbine and DE Optimization," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    14. Shazly A. Mohamed & Mohamed A. Tolba & Ayman A. Eisa & Ali M. El-Rifaie, 2021. "Comprehensive Modeling and Control of Grid-Connected Hybrid Energy Sources Using MPPT Controller," Energies, MDPI, vol. 14(16), pages 1-22, August.
    15. Ahmed G. Abo-Khalil & Abdel-Rahman Al-Qawasmi & Ali M. Eltamaly & B. G. Yu, 2020. "Condition Monitoring of DC-Link Electrolytic Capacitors in PWM Power Converters Using OBL Method," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    16. Mohammad Mujahid Irfan & Sushama Malaji & Chandrashekhar Patsa & Shriram S. Rangarajan & S. M. Suhail Hussain, 2022. "Control of DSTATCOM Using ANN-BP Algorithm for the Grid Connected Wind Energy System," Energies, MDPI, vol. 15(19), pages 1-14, September.
    17. Rafal Szczepanski & Marcin Kaminski & Tomasz Tarczewski, 2020. "Auto-Tuning Process of State Feedback Speed Controller Applied for Two-Mass System," Energies, MDPI, vol. 13(12), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3583-:d:351570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.