IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3350-d1120213.html
   My bibliography  Save this article

Performance Improvement of Grid-Integrated Doubly Fed Induction Generator under Asymmetrical and Symmetrical Faults

Author

Listed:
  • Mansoor Soomro

    (Department of Electrical Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Sindh, Pakistan)

  • Zubair Ahmed Memon

    (Department of Electrical Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Sindh, Pakistan)

  • Mazhar Hussain Baloch

    (Department of Electronics and Communication Engineering, College of Engineering, A’Sharqiyah University, Ibra 400, North Sharqiyah Region, Oman)

  • Nayyar Hussain Mirjat

    (Department of Electrical Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Sindh, Pakistan)

  • Laveet Kumar

    (Department of Mechanical Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Sindh, Pakistan)

  • Quynh T. Tran

    (Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, HI 96822, USA
    Institute of Energy Science—Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam)

  • Gaetano Zizzo

    (Department of Engineering, University of Palermo, 90128 Palermo, Italy)

Abstract

The doubly fed induction generator (DFIG)-based wind energy conversion system (WECS) suffers from voltage and frequency fluctuations due to the stochastic nature of wind speed as well as nonlinear loads. Moreover, the high penetration of wind energy into the power grid is a challenge for its smooth operation. Hence, symmetrical faults are most intense, inflicting the stator winding to low voltage, disturbing the low-voltage ride-through (LVRT) functionality of a DFIG. The vector control strategy with proportional–integral (PI) controllers was used to control rotor-side converter (RSC) and grid-side converter (GSC) parameters. During a symmetrical fault, however, a series grid-side converter (SGSC) with a shunt injection transformer on the stator side was used to keep the rotor current at an acceptable level in accordance with grid code requirements (GCRs). For the validation of results, the proposed scheme of PI + SGSC is compared with PI and a combination of PI with Dynamic Impedance Fault Current Limiter (DIFCL). The MATLAB simulation results demonstrate that the proposed scheme provides superior performance by providing 77.6% and 20.61% improved performance in rotor current compared to that of PI and PI + DIFCL control schemes for improving the LVRT performance of DFIG.

Suggested Citation

  • Mansoor Soomro & Zubair Ahmed Memon & Mazhar Hussain Baloch & Nayyar Hussain Mirjat & Laveet Kumar & Quynh T. Tran & Gaetano Zizzo, 2023. "Performance Improvement of Grid-Integrated Doubly Fed Induction Generator under Asymmetrical and Symmetrical Faults," Energies, MDPI, vol. 16(8), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3350-:d:1120213
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3350/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3350/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Minh Quan Duong & Sonia Leva & Marco Mussetta & Kim Hung Le, 2018. "A Comparative Study on Controllers for Improving Transient Stability of DFIG Wind Turbines During Large Disturbances," Energies, MDPI, vol. 11(3), pages 1-18, February.
    2. Yan Hong Yuan & Feng Wu, 2018. "Short-Circuit Current Analysis for DFIG Wind Farm Considering the Action of a Crowbar," Energies, MDPI, vol. 11(2), pages 1-15, February.
    3. Habib Benbouhenni & Nicu Bizon, 2021. "Advanced Direct Vector Control Method for Optimizing the Operation of a Double-Powered Induction Generator-Based Dual-Rotor Wind Turbine System," Mathematics, MDPI, vol. 9(19), pages 1-36, September.
    4. Mazhar Hussain Baloch & Dahaman Ishak & Sohaib Tahir Chaudary & Baqir Ali & Ali Asghar Memon & Touqeer Ahmed Jumani, 2019. "Wind Power Integration: An Experimental Investigation for Powering Local Communities," Energies, MDPI, vol. 12(4), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed G. Abo-Khalil & Ali S. Alghamdi & Ali M. Eltamaly & M. S. Al-Saud & Praveen R. P. & Khairy Sayed & G. R. Bindu & Iskander Tlili, 2019. "Design of State Feedback Current Controller for Fast Synchronization of DFIG in Wind Power Generation Systems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    2. David J. Rincon & Maria A. Mantilla & Juan M. Rey & Miguel Garnica & Damien Guilbert, 2023. "An Overview of Flexible Current Control Strategies Applied to LVRT Capability for Grid-Connected Inverters," Energies, MDPI, vol. 16(3), pages 1-20, January.
    3. Habib Benbouhenni & Nicu Bizon & Ilhami Colak & Phatiphat Thounthong & Noureddine Takorabet, 2022. "Simplified Super Twisting Sliding Mode Approaches of the Double-Powered Induction Generator-Based Multi-Rotor Wind Turbine System," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    4. Syed Wajahat Ali & Anant Kumar Verma & Yacine Terriche & Muhammad Sadiq & Chun-Lien Su & Chung-Hong Lee & Mahmoud Elsisi, 2022. "Finite-Control-Set Model Predictive Control for Low-Voltage-Ride-Through Enhancement of PMSG Based Wind Energy Grid Connection Systems," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
    5. Youjie Ma & Long Tao & Xuesong Zhou & Wei Li & Xueqi Shi, 2019. "Analysis and Control of Wind Power Grid Integration Based on a Permanent Magnet Synchronous Generator Using a Fuzzy Logic System with Linear Extended State Observer," Energies, MDPI, vol. 12(15), pages 1-19, July.
    6. Mohamed Derbeli & Oscar Barambones & Jose Antonio Ramos-Hernanz & Lassaad Sbita, 2019. "Real-Time Implementation of a Super Twisting Algorithm for PEM Fuel Cell Power System," Energies, MDPI, vol. 12(9), pages 1-20, April.
    7. Radu Saulescu & Mircea Neagoe & Codruta Jaliu, 2018. "Conceptual Synthesis of Speed Increasers for Wind Turbine Conversion Systems," Energies, MDPI, vol. 11(9), pages 1-33, August.
    8. Ukashatu Abubakar & Saad Mekhilef & Hazlie Mokhlis & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski & Hussain Bassi & Muhyaddin Jamal Hosin Rawa, 2018. "Transient Faults in Wind Energy Conversion Systems: Analysis, Modelling Methodologies and Remedies," Energies, MDPI, vol. 11(9), pages 1-33, August.
    9. Mircea Neagoe & Radu Saulescu & Codruta Jaliu, 2019. "Design and Simulation of a 1 DOF Planetary Speed Increaser for Counter-Rotating Wind Turbines with Counter-Rotating Electric Generators," Energies, MDPI, vol. 12(9), pages 1-19, May.
    10. Jing Li & Tao Zheng & Zengping Wang, 2018. "Short-Circuit Current Calculation and Harmonic Characteristic Analysis for a Doubly-Fed Induction Generator Wind Turbine under Converter Control," Energies, MDPI, vol. 11(9), pages 1-23, September.
    11. Javier Carroquino & José-Luis Bernal-Agustín & Rodolfo Dufo-López, 2019. "Standalone Renewable Energy and Hydrogen in an Agricultural Context: A Demonstrative Case," Sustainability, MDPI, vol. 11(4), pages 1-25, February.
    12. Habib Benbouhenni & Zinelaabidine Boudjema & Nicu Bizon & Phatiphat Thounthong & Noureddine Takorabet, 2022. "Direct Power Control Based on Modified Sliding Mode Controller for a Variable-Speed Multi-Rotor Wind Turbine System Using PWM Strategy," Energies, MDPI, vol. 15(10), pages 1-25, May.
    13. Mahmoud Rihan & Mahmoud Nasrallah & Barkat Hasanin & Adel El-Shahat, 2022. "A Proposed Controllable Crowbar for a Brushless Doubly-Fed Reluctance Generator, a Grid-Integrated Wind Turbine," Energies, MDPI, vol. 15(11), pages 1-29, May.
    14. Sen Song & Yihua Hu & Kai Ni & Joseph Yan & Guipeng Chen & Huiqing Wen & Xianming Ye, 2018. "Multi-Port High Voltage Gain Modular Power Converter for Offshore Wind Farms," Sustainability, MDPI, vol. 10(7), pages 1-15, June.
    15. Nayeem Ninad & Estefan Apablaza-Arancibia & Michel Bui & Jay Johnson, 2021. "Commercial PV Inverter IEEE 1547.1 Ride-Through Assessments Using an Automated PHIL Test Platform," Energies, MDPI, vol. 14(21), pages 1-21, October.
    16. Thales Ramos & Manoel F. Medeiros Júnior & Ricardo Pinheiro & Arthur Medeiros, 2019. "Slip Control of a Squirrel Cage Induction Generator Driven by an Electromagnetic Frequency Regulator to Achieve the Maximum Power Point Tracking," Energies, MDPI, vol. 12(11), pages 1-19, June.
    17. Heng Nian & Xiao Jin, 2021. "Modeling and Analysis of Transient Reactive Power Characteristics of DFIG Considering Crowbar Circuit under Ultra HVDC Commutation Failure," Energies, MDPI, vol. 14(10), pages 1-17, May.
    18. Woon-Gyu Lee & Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim, 2018. "Low-Voltage Ride-Through Operation of Grid-Connected Microgrid Using Consensus-Based Distributed Control," Energies, MDPI, vol. 11(11), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3350-:d:1120213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.