IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i4p1985-d745759.html
   My bibliography  Save this article

Recent Applications of the Electrocoagulation Process on Agro-Based Industrial Wastewater: A Review

Author

Listed:
  • Rakhmania

    (Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia
    These authors contributed equally to this work.)

  • Hesam Kamyab

    (Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia
    Department of Electric Power Stations, Network and Supply Systems, South Ural State University (National Research University), 454080 Chelyabinsk, Russia
    These authors contributed equally to this work.)

  • Muhammad Ali Yuzir

    (Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia)

  • Norhayati Abdullah

    (Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia)

  • Le Minh Quan

    (Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia)

  • Fatimah Azizah Riyadi

    (Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia)

  • Riadh Marzouki

    (Chemistry Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
    Chemistry Department, Faculty of Sciences of Sfax, University of Sfax, Sfax 3029, Tunisia)

Abstract

Agro-based final discharge is one of the major contributors to wastewater in the world. It creates high demand for efficient treatment. The electrocoagulation process can be used for agro-based wastewater treatment. The performance of the electrocoagulation process is based on several parameters, including the electrode materials, electrolysis time, current density, and electrolyte support. Agro-based industrial wastewater (AIW) treatment processes depend on the characteristics of the wastewater. The removal of organic content from various sources of AIW can reach up to more than 80%. Some studies show that the performance of the electrochemical process can be increased using a combination with other methods. Those other methods include biological and physical treatment. The results of previous research show that organic content and color can be degraded completely. The relationship between the energy consumption and operating cost was analyzed in order to show the efficiency of electrocoagulation treatment.

Suggested Citation

  • Rakhmania & Hesam Kamyab & Muhammad Ali Yuzir & Norhayati Abdullah & Le Minh Quan & Fatimah Azizah Riyadi & Riadh Marzouki, 2022. "Recent Applications of the Electrocoagulation Process on Agro-Based Industrial Wastewater: A Review," Sustainability, MDPI, vol. 14(4), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:1985-:d:745759
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/4/1985/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/4/1985/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    2. Chin, May Ji & Poh, Phaik Eong & Tey, Beng Ti & Chan, Eng Seng & Chin, Kit Ling, 2013. "Biogas from palm oil mill effluent (POME): Opportunities and challenges from Malaysia's perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 717-726.
    3. Murthy, Pushpa S. & Madhava Naidu, M., 2012. "Sustainable management of coffee industry by-products and value addition—A review," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 45-58.
    4. Ntaikou, I. & Antonopoulou, G. & Vayenas, D. & Lyberatos, G., 2020. "Assessment of electrocoagulation as a pretreatment method of olive mill wastewater towards alternative processes for biofuels production," Renewable Energy, Elsevier, vol. 154(C), pages 1252-1262.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesús Fernando Martínez-Villafañe & Juan Carlos Ortiz-Cuellar & Jesús Salvador Galindo-Valdés & Francisco Cepeda-Rodríguez & Josué Gómez-Casas & Nelly Abigaíl Rodríguez-Rosales & Oziel Gómez-Casas & C, 2022. "Interelectrode Distance Analysis in the Water Defluoridation by Electrocoagulation Reactor," Sustainability, MDPI, vol. 14(19), pages 1-8, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jasmine Sie Ming Tiong & Yi Jing Chan & Jun Wei Lim & Mardawani Mohamad & Chii-Dong Ho & Anisa Ur Rahmah & Worapon Kiatkittipong & Wipoo Sriseubsai & Izumi Kumakiri, 2021. "Simulation and Optimization of Anaerobic Co-Digestion of Food Waste with Palm Oil Mill Effluent for Biogas Production," Sustainability, MDPI, vol. 13(24), pages 1-22, December.
    2. Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
    3. Shen-Tsu Wang, 2016. "Integrating grey sequencing with the genetic algorithm--immune algorithm to optimise touch panel cover glass polishing process parameter design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4882-4893, August.
    4. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    6. Czekała, Wojciech & Łukomska, Aleksandra & Pulka, Jakub & Bojarski, Wiktor & Pochwatka, Patrycja & Kowalczyk-Juśko, Alina & Oniszczuk, Anna & Dach, Jacek, 2023. "Waste-to-energy: Biogas potential of waste from coffee production and consumption," Energy, Elsevier, vol. 276(C).
    7. Kaushik, Lav Kumar & Muthukumar, P., 2020. "Thermal and economic performance assessments of waste cooking oil /kerosene blend operated pressure cook-stove with porous radiant burner," Energy, Elsevier, vol. 206(C).
    8. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    9. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    10. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    11. D. M. D. Rasika & Janak K. Vidanarachchi & Selma F. Luiz & Denise Rosane Perdomo Azeredo & Adriano G. Cruz & Chaminda Senaka Ranadheera, 2021. "Probiotic Delivery through Non-Dairy Plant-Based Food Matrices," Agriculture, MDPI, vol. 11(7), pages 1-23, June.
    12. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    13. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.
    14. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    15. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    16. Chamberlin Stéphane Azebaze Mboving & Zbigniew Hanzelka & Andrzej Firlit, 2022. "Analysis of the Factors Having an Influence on the LC Passive Harmonic Filter Work Efficiency," Energies, MDPI, vol. 15(5), pages 1-51, March.
    17. Lu Chen & Qincheng Chen & Pinhua Rao & Lili Yan & Alghashm Shakib & Guoqing Shen, 2018. "Formulating and Optimizing a Novel Biochar-Based Fertilizer for Simultaneous Slow-Release of Nitrogen and Immobilization of Cadmium," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    18. Biranchi Panda & K. Shankhwar & Akhil Garg & M. M. Savalani, 2019. "Evaluation of genetic programming-based models for simulating bead dimensions in wire and arc additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 809-820, February.
    19. Hasheminasab, M. & Kermani, M.J. & Nourazar, S.S. & Khodsiani, M.H., 2020. "A novel experimental based statistical study for water management in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 264(C).
    20. Zahedi, Ali Reza & Mirnezami, Seyed Abolfazl, 2020. "Experimental analysis of biomass to biodiesel conversion using a novel renewable combined cycle system," Renewable Energy, Elsevier, vol. 162(C), pages 1177-1194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:1985-:d:745759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.