IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i2p942-d724986.html
   My bibliography  Save this article

Impacts of Climatic Variation and Human Activity on Runoff in Western China

Author

Listed:
  • Yinge Liu

    (Key Laboratory of Disaster Monitoring and Mechanism Simulating in Shaanxi Province, Baoji 721013, China
    College of Geography and Environment, Baoji University of Arts and Sciences, Baoji 721013, China)

  • Keke Yu

    (Key Laboratory of Disaster Monitoring and Mechanism Simulating in Shaanxi Province, Baoji 721013, China
    College of Geography and Environment, Baoji University of Arts and Sciences, Baoji 721013, China)

  • Yaqian Zhao

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
    UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland)

  • Jiangchuan Bao

    (College of Geography and Environment, Baoji University of Arts and Sciences, Baoji 721013, China)

Abstract

Hydrological cycle is sensitively affected by climatic variation and human activity. Taking the upper- and middle-stream of the Weihe River in western China as an example, using multiple meteorological and hydrological elements, as well as land-use/land-cover change (LUCC) data, we constructed a sensitivity model of runoff to climatic elements and human activities based on the hydro-thermal coupling equilibrium equation, while a cumulative slope was used to establish a comprehensive estimation model for the contributions of climatic variation and human activities to the changes of runoff. The results showed that the above function model established could be well applied to quantitatively study the elasticity of runoff’s response to climatic variation and human activities. It was found that the annual average precipitation, evaporation, wind velocity, sunshine hours, relative humidity and runoff showed decreasing trends and that temperature increased. While in the hydrological cycle, precipitation and relative humidity had a non-linear positive driving effect on runoff, while temperature, evaporation, sunshine hours, wind velocity, and land-use/land-cover change (LUCC) have non-linearly negatively driven the variation of runoff. Moreover, runoff has a strong sensitive response to precipitation, evaporation and LUCC. In areas with strong human activities, the sensitivity of runoff to climatic change was decreasing, and runoff has a greater elastic response to underlying surface parameters. In addition, the analysis showed that the abrupt years of climate and runoff changes in the Weihe River Basin were 1970, 1985 and 1993. Before 1985, the contribution rate of climatic variation to runoff was 68.3%, being greater than that of human activities to runoff, and then the contribution rates of human activities to runoff reached 75.1%. The impact of natural climate on runoff was weakened, and the effect of human activities on runoff reduction increased. Under 30 hypothetical climatic scenarios, the evaluation of runoff in the future showed that the runoff in the Weihe River Basin will be greatly reduced, and the reduction will be more significant during the flood season. Comparing the geographically fragile environments and intense human activities, it was believed that climatic variation had a dramatic effect on driving the water cycle of precipitation and evaporation and affected regional water balance and water distribution, while human activities had driven the hydrological processes of the underlying surface, thus becoming the main factors in the reduction of runoff. This study provided scientific tools for regional climate change and water resources assessment.

Suggested Citation

  • Yinge Liu & Keke Yu & Yaqian Zhao & Jiangchuan Bao, 2022. "Impacts of Climatic Variation and Human Activity on Runoff in Western China," Sustainability, MDPI, vol. 14(2), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:942-:d:724986
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/2/942/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/2/942/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    2. Yang, Yang & Cui, Yuanlai & Luo, Yufeng & Lyu, Xinwei & Traore, Seydou & Khan, Shahbaz & Wang, Weiguang, 2016. "Short-term forecasting of daily reference evapotranspiration using the Penman-Monteith model and public weather forecasts," Agricultural Water Management, Elsevier, vol. 177(C), pages 329-339.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wanru Ba & Haitao Qiu & Yonggang Cao & Adu Gong, 2023. "Spatiotemporal Characteristics Prediction and Driving Factors Analysis of NPP in Shanxi Province Covering the Period 2001–2020," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    2. Yinge Liu & Yanjun Wen & Yaqian Zhao & Haonan Hu, 2022. "Analysis of Drought and Flood Variations on a 200-Year Scale Based on Historical Environmental Information in Western China," IJERPH, MDPI, vol. 19(5), pages 1-16, February.
    3. Xichen Che & Liang Jiao & Huijun Qin & Jingjing Wu, 2022. "Impacts of Climate and Land Use/Cover Change on Water Yield Services in the Upper Yellow River Basin in Maqu County," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    4. Yajuan Wang & Yongheng Rao & Hongbo Zhu, 2022. "Revealing the Impact of Protected Areas on Land Cover Volatility in China," Land, MDPI, vol. 11(8), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    2. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    3. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    4. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    5. Xu, Ying & Findlay, Christopher, 2019. "Farmers’ constraints, governmental support and climate change adaptation: Evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    6. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    7. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    8. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    9. Cao, Jingjing & Tan, Junwei & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation scheduling of paddy rice using short-term weather forecast data," Agricultural Water Management, Elsevier, vol. 213(C), pages 714-723.
    10. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    11. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    12. Zhihai Yang & Amin W. Mugera & Fan Zhang, 2016. "Investigating Yield Variability and Inefficiency in Rice Production: A Case Study in Central China," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    13. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    14. Sicong Wang & Changhai Qin & Yong Zhao & Jing Zhao & Yuping Han, 2023. "The Evolutionary Path of the Center of Gravity for Water Use, the Population, and the Economy, and Their Decomposed Contributions in China from 1965 to 2019," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    15. Minghao Bai & Shenbei Zhou & Ting Tang, 2022. "A Reconstruction of Irrigated Cropland Extent in China from 2000 to 2019 Using the Synergy of Statistics and Satellite-Based Datasets," Land, MDPI, vol. 11(10), pages 1-27, September.
    16. Yang, Wenjie & Li, Yanhang & Jia, Bingli & Liu, Lei & Yuan, Aijing & Liu, Jinshan & Qiu, Weihong, 2024. "Optimized fertilization based on fallow season precipitation and the Nutrient Expert system for dryland wheat reduced environmental risks and increased economic benefits," Agricultural Water Management, Elsevier, vol. 291(C).
    17. Wang, Guangshuai & Liang, Yueping & Zhang, Qian & Jha, Shiva K. & Gao, Yang & Shen, Xiaojun & Sun, Jingsheng & Duan, Aiwang, 2016. "Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 163(C), pages 403-407.
    18. Yoro Diallo & Sébastien Marchand & Etienne Espagne, 2019. "Impacts of extreme events on technical efficiency in Vietnamese agriculture," CERDI Working papers halshs-02080285, HAL.
    19. Cao, Meng & Chen, Min & Liu, Ji & Liu, Yanli, 2022. "Assessing the performance of satellite soil moisture on agricultural drought monitoring in the North China Plain," Agricultural Water Management, Elsevier, vol. 263(C).
    20. Xu, Zhihao & Yin, Xinan & Yang, Zhifeng & Cai, Yanpeng & Sun, Tao, 2016. "New model to assessing nutrient assimilative capacity in plant-dominated lakes: Considering ecological effects of hydrological changes," Ecological Modelling, Elsevier, vol. 332(C), pages 94-102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:942-:d:724986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.