IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10363-d892985.html
   My bibliography  Save this article

Impacts of Climate and Land Use/Cover Change on Water Yield Services in the Upper Yellow River Basin in Maqu County

Author

Listed:
  • Xichen Che

    (College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
    Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou 730070, China)

  • Liang Jiao

    (College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
    Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou 730070, China)

  • Huijun Qin

    (College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
    Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou 730070, China)

  • Jingjing Wu

    (College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
    Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou 730070, China)

Abstract

The upper Yellow River Basin is an important ecological security barrier and a water conservation area in northwest China. The sustainability of its water yield services has generated much concern and debate. Spatial and temporal patterns of water yield factors are considered to be important scientific data. Therefore, the climate and land data of the upper Yellow River Basin in Maqu County are studied. Water yield for the period 1990–2020 was estimated using the water yield module in the InVEST model. Impacts and contribution weights of climate and land use/cover change on regional water yield were also quantified under 12 scenarios. The results indicate that (1) the average water yield in Maqu County has fluctuated and increased in the past 30 years. The increase in rainfall was more pronounced than the increase in potential evapotranspiration. Grassland areas continue to increase and unutilized land areas continue to decrease. (2) The average water yield for different types of land use during this period also varied. It showed grassland > unutilized land > forest > construction land > waterbody > cropland. (3) Climate change has a greater impact on water yield in Maqu County and further increases its contribution to regional water yield. The impact of land use/cover change was smaller and the contribution was smaller.

Suggested Citation

  • Xichen Che & Liang Jiao & Huijun Qin & Jingjing Wu, 2022. "Impacts of Climate and Land Use/Cover Change on Water Yield Services in the Upper Yellow River Basin in Maqu County," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10363-:d:892985
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10363/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10363/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kareiva, Peter & Tallis, Heather & Ricketts, Taylor H. & Daily, Gretchen C. & Polasky, Stephen (ed.), 2011. "Natural Capital: Theory and Practice of Mapping Ecosystem Services," OUP Catalogue, Oxford University Press, number 9780199589005.
    2. Stephen Polasky & Erik Nelson & Derric Pennington & Kris Johnson, 2011. "The Impact of Land-Use Change on Ecosystem Services, Biodiversity and Returns to Landowners: A Case Study in the State of Minnesota," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 219-242, February.
    3. M. Shaw & Linwood Pendleton & D. Cameron & Belinda Morris & Dominique Bachelet & Kirk Klausmeyer & Jason MacKenzie & David Conklin & Gregrory Bratman & James Lenihan & Erik Haunreiter & Christopher Da, 2011. "The impact of climate change on California’s ecosystem services," Climatic Change, Springer, vol. 109(1), pages 465-484, December.
    4. Xiao Zhang & Xiaomin Chen & Wanshun Zhang & Hong Peng & Gaohong Xu & Yanxin Zhao & Zhenling Shen, 2022. "Impact of Land Use Changes on the Surface Runoff and Nutrient Load in the Three Gorges Reservoir Area, China," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    5. Yinge Liu & Keke Yu & Yaqian Zhao & Jiangchuan Bao, 2022. "Impacts of Climatic Variation and Human Activity on Runoff in Western China," Sustainability, MDPI, vol. 14(2), pages 1-19, January.
    6. Logsdon, Rebecca A. & Chaubey, Indrajeet, 2013. "A quantitative approach to evaluating ecosystem services," Ecological Modelling, Elsevier, vol. 257(C), pages 57-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruibing Meng & Jiale Cai & Hui Xin & Zhongju Meng & Xiaohong Dang & Yanlong Han, 2023. "Spatio-Temporal Changes in Land Use and Habitat Quality of Hobq Desert along the Yellow River Section," IJERPH, MDPI, vol. 20(4), pages 1-24, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Shan & Duggan, Jennifer M. & Eichelberger, Bradley A. & McNally, Brynn W. & Foster, Jeffrey R. & Pepi, Eda & Conte, Marc N. & Daily, Gretchen C. & Ziv, Guy, 2016. "Valuation of ecosystem services to inform management of multiple-use landscapes," Ecosystem Services, Elsevier, vol. 19(C), pages 6-18.
    2. Mengyao Li & Yong Zhou & Pengnan Xiao & Yang Tian & He Huang & Liang Xiao, 2021. "Evolution of Habitat Quality and Its Topographic Gradient Effect in Northwest Hubei Province from 2000 to 2020 Based on the InVEST Model," Land, MDPI, vol. 10(8), pages 1-25, August.
    3. Ruckelshaus, Mary & McKenzie, Emily & Tallis, Heather & Guerry, Anne & Daily, Gretchen & Kareiva, Peter & Polasky, Stephen & Ricketts, Taylor & Bhagabati, Nirmal & Wood, Spencer A. & Bernhardt, Joanna, 2015. "Notes from the field: Lessons learned from using ecosystem service approaches to inform real-world decisions," Ecological Economics, Elsevier, vol. 115(C), pages 11-21.
    4. Valencia Torres, Angélica & Tiwari, Chetan & Atkinson, Samuel F., 2021. "Progress in ecosystem services research: A guide for scholars and practitioners," Ecosystem Services, Elsevier, vol. 49(C).
    5. Léa Tardieu & Laetitia Tufféry, 2019. "From supply to demand factors : what are the determinants of attractiveness for outdoor recreation?," Post-Print hal-02883545, HAL.
    6. Turner, Katrine Grace & Anderson, Sharolyn & Gonzales-Chang, Mauricio & Costanza, Robert & Courville, Sasha & Dalgaard, Tommy & Dominati, Estelle & Kubiszewski, Ida & Ogilvy, Sue & Porfirio, Luciana &, 2016. "A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration," Ecological Modelling, Elsevier, vol. 319(C), pages 190-207.
    7. Jingwei Xu & Shiliang Liu & Shuang Zhao & Xue Wu & Xiaoyun Hou & Yi An & Zhenyao Shen, 2019. "Spatiotemporal Dynamics of Water Yield Service and Its Response to Urbanisation in the Beiyun River Basin, Beijing," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    8. Léa Tardieu, 2017. "The need for integrated spatial assessments in ecosystem service mapping," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(3), pages 173-200, December.
    9. Rimal, Bhagawat & Sharma, Roshan & Kunwar, Ripu & Keshtkar, Hamidreza & Stork, Nigel E. & Rijal, Sushila & Rahman, Syed Ajijur & Baral, Himlal, 2019. "Effects of land use and land cover change on ecosystem services in the Koshi River Basin, Eastern Nepal," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    10. Tardieu, Léa & Tuffery, Laëtitia, 2019. "From supply to demand factors: What are the determinants of attractiveness for outdoor recreation?," Ecological Economics, Elsevier, vol. 161(C), pages 163-175.
    11. Paulo A.L.D. Nunes & Pushpam Kumar & Tom Dedeurwaerdere (ed.), 2014. "Handbook on the Economics of Ecosystem Services and Biodiversity," Books, Edward Elgar Publishing, number 15058.
    12. Dainee M. Gibson & John E. Quinn, 2017. "Application of Anthromes to Frame Scenario Planning for Landscape-Scale Conservation Decision Making," Land, MDPI, vol. 6(2), pages 1-17, May.
    13. Lele, Sharachchandra & Srinivasan, Veena, 2013. "Disaggregated economic impact analysis incorporating ecological and social trade-offs and techno-institutional context: A case from the Western Ghats of India," Ecological Economics, Elsevier, vol. 91(C), pages 98-112.
    14. Min Liu & Jianpeng Fan & Yuanzheng Li & Qizheng Mao, 2023. "Ecosystem Service Optimisation in the Central Plains Urban Agglomeration Based on Land Use Structure Adjustment," Land, MDPI, vol. 12(7), pages 1-27, July.
    15. Brendan Fisher & Stephen Polasky & Thomas Sterner, 2011. "Conservation and Human Welfare: Economic Analysis of Ecosystem Services," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 151-159, February.
    16. Mengzhu Liu & Leilei Min & Jingjing Zhao & Yanjun Shen & Hongwei Pei & Hongjuan Zhang & Yali Li, 2021. "The Impact of Land Use Change on Water-Related Ecosystem Services in the Bashang Area of Hebei Province, China," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    17. Hermes, Johannes & von Haaren, Christina & Schmücker, Dirk & Albert, Christian, 2021. "Nature-based recreation in Germany: Insights into volume and economic significance," Ecological Economics, Elsevier, vol. 188(C).
    18. Duy X. Tran & Diane Pearson & Alan Palmer & David Gray, 2020. "Developing a Landscape Design Approach for the Sustainable Land Management of Hill Country Farms in New Zealand," Land, MDPI, vol. 9(6), pages 1-29, June.
    19. Shujun Liu & Xinzhuan Yao & Degang Zhao & Litang Lu, 2021. "Evaluation of the ecological benefits of tea gardens in Meitan County, China, using the InVEST model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7140-7155, May.
    20. Shengjun Yan & Xuan Wang & Yanpeng Cai & Chunhui Li & Rui Yan & Guannan Cui & Zhifeng Yang, 2018. "An Integrated Investigation of Spatiotemporal Habitat Quality Dynamics and Driving Forces in the Upper Basin of Miyun Reservoir, North China," Sustainability, MDPI, vol. 10(12), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10363-:d:892985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.