IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p16263-d994734.html
   My bibliography  Save this article

Appraisal of Heavy Metals Accumulation, Physiological Response, and Human Health Risks of Five Crop Species Grown at Various Distances from Traffic Highway

Author

Listed:
  • Shakeel Ahmad

    (Laboratory of Molecular Stress Physiology and Phytotechnology, Department of Biotechnology, Faculty of Biological Science, University of Malakand, Chakdara 18800, Pakistan)

  • Fazal Hadi

    (Laboratory of Molecular Stress Physiology and Phytotechnology, Department of Biotechnology, Faculty of Biological Science, University of Malakand, Chakdara 18800, Pakistan)

  • Amin Ullah Jan

    (Department of Biotechnology, Faculty of Science, Shaheed Benazir Bhutto University, Sheringal, Dir (upper) 18000, Pakistan)

  • Raza Ullah

    (Laboratory of Molecular Stress Physiology and Phytotechnology, Department of Biotechnology, Faculty of Biological Science, University of Malakand, Chakdara 18800, Pakistan
    Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, School of Arts and Science, University of North Carolina at Greensboro, Greensboro, NC 27412, USA)

  • Bedur Faleh A. Albalawi

    (Department of Biology, University of Tabuk, Tabuk 47512, Saudi Arabia)

  • Allah Ditta

    (Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal, Dir (upper) 18000, Pakistan
    School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia)

Abstract

Road surfaces and vehicular traffic contribute to heavy metals (HM) contamination of soil and plants, which poses various health risks to humans by entering the food chain. It is imperative to evaluate the status of contamination with HM and associated health risks in soils and plants, especially food crops. In this regard, five crop species, i.e., strawberry ( Fragaria ananassa ), wheat ( Triticum aestivum ), tomato ( Lycopersicon esculentum ), sugar cane ( Saccharum officinarum ), and tobacco ( Nicotiana tabacum ), were evaluated at 0–10, 10–50, and 50–100 m distance from the highway near the urban area (Takht Bhai) of Mardan, Khyber Pakhtunkhwa, Pakistan. Lead (Pb) and cadmium (Cd) accumulation, phenolics, carotenoids, chlorophyll, and proline contents in plant parts were assessed. Pb and Cd in plants decreased with an increase in distance. Pb was above the critical limit in all plants except wheat, Cd exceeded the permissible level of the World Health Organization in all plants except wheat and tomato. Pb and Cd were higher in strawberries. Tomato and strawberry fruits, tobacco leaves, and sugarcane stems showed higher Pb contents at a 0–10 m distance. Phenolic contents in leaves were higher than in roots. The target hazard quotient (THQ) in edible parts of most crops has been greater than one, which presents a threat to human health upon consumption. To the best of our knowledge, this study presents the first holistic approach to assess metal contamination in the selected area, its accumulation in field-grown edible crops, and associated health risk.

Suggested Citation

  • Shakeel Ahmad & Fazal Hadi & Amin Ullah Jan & Raza Ullah & Bedur Faleh A. Albalawi & Allah Ditta, 2022. "Appraisal of Heavy Metals Accumulation, Physiological Response, and Human Health Risks of Five Crop Species Grown at Various Distances from Traffic Highway," Sustainability, MDPI, vol. 14(23), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16263-:d:994734
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/16263/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/16263/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahrous Awad & Mahmuod M. El-Sayed & Xiang Li & Zhongzhen Liu & Syed Khalid Mustafa & Allah Ditta & Kamel Hessini, 2021. "Diminishing Heavy Metal Hazards of Contaminated Soil via Biochar Supplementation," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    2. Muhammad Sabir & Edita Baltrėnaitė-Gedienė & Allah Ditta & Hussain Ullah & Aatika Kanwal & Sajid Ullah & Turki Kh. Faraj, 2022. "Bioaccumulation of Heavy Metals in a Soil–Plant System from an Open Dumpsite and the Associated Health Risks through Multiple Routes," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    3. Caspah Kamunda & Manny Mathuthu & Morgan Madhuku, 2016. "Health Risk Assessment of Heavy Metals in Soils from Witwatersrand Gold Mining Basin, South Africa," IJERPH, MDPI, vol. 13(7), pages 1-11, June.
    4. Rongkui Su & Qiqi Ou & Hanqing Wang & Yiting Luo & Xiangrong Dai & Yangyang Wang & Yonghua Chen & Lei Shi, 2022. "Comparison of Phytoremediation Potential of Nerium indicum with Inorganic Modifier Calcium Carbonate and Organic Modifier Mushroom Residue to Lead–Zinc Tailings," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    5. Rizwan Ahmad & Fazal Hadi & Amin Ullah Jan & Allah Ditta, 2022. "Straw Incorporation in Contaminated Soil Enhances Drought Tolerance but Simultaneously Increases the Accumulation of Heavy Metals in Rice," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bassam Tawabini & Mubarak Al-Enazi & Mansour A. Alghamdi & Ashraf Farahat & Ahsan M. Shemsi & Marwan Y. Al Sharif & Mamdouh I. Khoder, 2023. "Potentially Harmful Elements Associated with Dust of Mosques: Pollution Status, Sources, and Human Health Risks," IJERPH, MDPI, vol. 20(3), pages 1-30, February.
    2. Arwa A. AL-Huqail & Pankaj Kumar & Ebrahem M. Eid & Bashir Adelodun & Sami Abou Fayssal & Jogendra Singh & Ashish Kumar Arya & Madhumita Goala & Vinod Kumar & Ivan Širić, 2022. "Risk Assessment of Heavy Metals Contamination in Soil and Two Rice ( Oryza sativa L.) Varieties Irrigated with Paper Mill Effluent," Agriculture, MDPI, vol. 12(11), pages 1-13, November.
    3. Suxin Zhang & Cheng Hu & Jiemin Cheng, 2022. "A Comprehensive Evaluation System for the Stabilization Effect of Heavy Metal-Contaminated Soil Based on Analytic Hierarchy Process," IJERPH, MDPI, vol. 19(22), pages 1-18, November.
    4. Minsi Xiao & Shitong Xu & Bing Yang & Guangcong Zeng & Lidan Qian & Haiwei Huang & Sili Ren, 2022. "Contamination, Source Apportionment, and Health Risk Assessment of Heavy Metals in Farmland Soils Surrounding a Typical Copper Tailings Pond," IJERPH, MDPI, vol. 19(21), pages 1-15, November.
    5. Aso H. Saeed H. Salih & Abdullah A. Hama & Karzan A. M. Hawrami & Allah Ditta, 2021. "The Land Snail, Eobania vermiculata , as a Bioindicator of the Heavy Metal Pollution in the Urban Areas of Sulaimani, Iraq," Sustainability, MDPI, vol. 13(24), pages 1-14, December.
    6. Busisiwe Shezi & Renée Anne Street & Candice Webster & Zamantimande Kunene & Angela Mathee, 2022. "Heavy Metal Contamination of Soil in Preschool Facilities around Industrial Operations, Kuils River, Cape Town (South Africa)," IJERPH, MDPI, vol. 19(7), pages 1-14, April.
    7. Rongkui Su & Hongguo Zhang & Feng Chen & Zhenxing Wang & Lei Huang, 2022. "Applications of Single Atom Catalysts for Environmental Management," IJERPH, MDPI, vol. 19(18), pages 1-6, September.
    8. Múcio Magno de Melo Farnezi & Enilson de Barros Silva & Lauana Lopes dos Santos & Alexandre Christofaro Silva & Paulo Henrique Grazziotti & Luís Reynaldo Ferracciú Alleoni & Wesley Costa Silva & Angel, 2022. "Potential of Forage Grasses in Phytoremediation of Lead through Production of Phytoliths in Contaminated Soils," Land, MDPI, vol. 12(1), pages 1-10, December.
    9. Enkhchimeg Battsengel & Takehiko Murayama & Keisuke Fukushi & Shigeo Nishikizawa & Sonomdagva Chonokhuu & Altansukh Ochir & Solongo Tsetsgee & Davaadorj Davaasuren, 2020. "Ecological and Human Health Risk Assessment of Heavy Metal Pollution in the Soil of the Ger District in Ulaanbaatar, Mongolia," IJERPH, MDPI, vol. 17(13), pages 1-21, June.
    10. Iyioluwa Busuyi Raji & Emile Hoffmann & Adeline Ngie & Frank Winde, 2021. "Assessing Uranium Pollution Levels in the Rietspruit River, Far West Rand Goldfield, South Africa," IJERPH, MDPI, vol. 18(16), pages 1-12, August.
    11. Marcelo Sampaio Ocampos & Luana Carolina Santos Leite & Elaine Silva de Pádua Melo & Rita de Cássia Avellaneda Guimarães & Rodrigo Juliano Oliveira & Karine de Cássia Freitas & Priscila Aiko Hiane & A, 2023. "Indirect Methods to Determine the Risk of Damage to the Health of Firefighters and Children Due to Exposure to Smoke Emission from Burning Wood/Coal in a Controlled Environment," IJERPH, MDPI, vol. 20(8), pages 1-20, April.
    12. Theodora Bousdra & Sotiria G. Papadimou & Evangelia E. Golia, 2023. "The Use of biochar in the Remediation of Pb , Cd , and Cu -Contaminated Soils. The Impact of biochar Feedstock and Preparation Conditions on Its Remediation Capacity," Land, MDPI, vol. 12(2), pages 1-20, January.
    13. Jie Xiang & Peiwei Xu & Weizhong Chen & Xiaofeng Wang & Zhijian Chen & Dandan Xu & Yuan Chen & Mingluan Xing & Ping Cheng & Lizhi Wu & Bing Zhu, 2022. "Pollution Characteristics and Health Risk Assessment of Heavy Metals in Agricultural Soils over the Past Five Years in Zhejiang, Southeast China," IJERPH, MDPI, vol. 19(22), pages 1-14, November.
    14. Truong Xuan Vuong & Thi Thu Ha Pham & Thi Thu Thuy Nguyen & Dung Thuy Nguyen Pham, 2023. "Effects of Biochar and Apatite on Chemical Forms of Lead and Zinc in Multi-Metal-Contaminated Soil after Incubation: A Comparison of Peanut Shell and Corn Cob Biochar," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
    15. Ababo Workineh Tadesse & Tekleweini Gereslassie & Qiang Xu & Xiaojun Tang & Jun Wang, 2018. "Concentrations, Distribution, Sources and Ecological Risk Assessment of Trace Elements in Soils from Wuhan, Central China," IJERPH, MDPI, vol. 15(12), pages 1-19, December.
    16. Rongkui Su & Xiangrong Dai & Hanqing Wang & Zhixiang Wang & Zishi Li & Yonghua Chen & Yiting Luo & Danxia Ouyang, 2022. "Metronidazole Degradation by UV and UV/H 2 O 2 Advanced Oxidation Processes: Kinetics, Mechanisms, and Effects of Natural Water Matrices," IJERPH, MDPI, vol. 19(19), pages 1-19, September.
    17. Rongkui Su & Yangyang Wang & Shunhong Huang & Runhua Chen & Jun Wang, 2022. "Application for Ecological Restoration of Contaminated Soil: Phytoremediation," IJERPH, MDPI, vol. 19(20), pages 1-6, October.
    18. Muhammad Sabir & Edita Baltrėnaitė-Gedienė & Allah Ditta & Hussain Ullah & Aatika Kanwal & Sajid Ullah & Turki Kh. Faraj, 2022. "Bioaccumulation of Heavy Metals in a Soil–Plant System from an Open Dumpsite and the Associated Health Risks through Multiple Routes," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    19. Jingdong Wu & Mingxu Wang & Tingting Wang & Xinxi Fu, 2022. "Evaluation of Ecological Service Function of Liquidambar formosana Plantations," IJERPH, MDPI, vol. 19(22), pages 1-16, November.
    20. Walter Bravo-Zevallos & Yadira Fernández-Jerí & Juan C. Torres-Lázaro & Karol Zuñiga-Bardales, 2024. "Assessment of Human Health Risk Indices Due to Metal Contamination in the Surface Water of the Negro River Sub-Basin, Áncash," IJERPH, MDPI, vol. 21(6), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16263-:d:994734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.