IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i3p2687-d1055937.html
   My bibliography  Save this article

Potentially Harmful Elements Associated with Dust of Mosques: Pollution Status, Sources, and Human Health Risks

Author

Listed:
  • Bassam Tawabini

    (Department of Geosciences, College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Mubarak Al-Enazi

    (Department of Geosciences, College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Mansour A. Alghamdi

    (Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia)

  • Ashraf Farahat

    (Department of Physics, College of Engineering and Physics, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Ahsan M. Shemsi

    (Environmental Chemistry and Analytical Laboratories Section, Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

  • Marwan Y. Al Sharif

    (Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia)

  • Mamdouh I. Khoder

    (Air Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, El Behooth Str., Dokki, Giza 12622, Egypt)

Abstract

Potentially harmful elements (PHEs) associated with dust generated from anthropogenic sources can be transported into mosques and deposited on the filters of the air-conditioners (AC); thereby, children and adults are exposed to such PHEs while visiting mosques. Data dealing with the assessment of PHEs pollution and its human health risk in mosques dust in Saudi Arabia are scarce. Therefore, this work aims to examine the levels and pollution status of PHEs in AC filter dust (ACFD) of mosques and their associated human health risk in three Saudi cities: Jubail, Jeddah, and Dammam metropolitan. A similar concentration pattern of PHEs is observed in three cities’ mosques with noticeably higher concentrations than both global crustal and local background values for Zn, Cu, Pb, As, and Cd only. Except for Fe, Al, and Mn, the highest PHEs concentrations were found in Jeddah (1407 mg/kg), followed by Dammam (1239 mg/kg) and Jubail (1103 mg/kg). High PHEs’ concentrations were also recorded in mosques located near workshops and suburban areas compared to urban areas. Based on the spatial pattern, enrichment factor, geo-accumulation index, pollution load index, and ecological risk values, Jubail, Jeddah, and Dammam have shown moderate pollution levels of Cd, As, Pb, and Zn. On the other hand, Cu. Zn, Cu, Cr, Pb, Ni, As, and Cd had degrees of enrichment levels that varied from significantly enriched to extremely highly enriched in the ACFD of the three cities. Heavy pollution is found in Jubail, which posed a higher potential ecological risk than in Jeddah and Dammam. Cd presents the highest ecological risk factors (ER) in the three cities. Carcinogenic and non-carcinogenic risks for children and adults follow the order: Jeddah > Dammam > Jubail, and the ingestion pathway was the main route for exposure. Carcinogenic and con-carcinogenic risks in the mosques of the various studied cities were generally within the acceptable range.

Suggested Citation

  • Bassam Tawabini & Mubarak Al-Enazi & Mansour A. Alghamdi & Ashraf Farahat & Ahsan M. Shemsi & Marwan Y. Al Sharif & Mamdouh I. Khoder, 2023. "Potentially Harmful Elements Associated with Dust of Mosques: Pollution Status, Sources, and Human Health Risks," IJERPH, MDPI, vol. 20(3), pages 1-30, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2687-:d:1055937
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/3/2687/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/3/2687/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mansour A. Alghamdi & Salwa K. Hassan & Noura A. Alzahrani & Marwan Y. Al Sharif & Mamdouh I. Khoder, 2020. "Classroom Dust-Bound Polycyclic Aromatic Hydrocarbons in Jeddah Primary Schools, Saudi Arabia: Level, Characteristics and Health Risk Assessment," IJERPH, MDPI, vol. 17(8), pages 1-23, April.
    2. Sharif Arar & Afnan Al-Hunaiti & Mohanad H. Masad & Androniki Maragkidou & Darren Wraith & Tareq Hussein, 2019. "Elemental Contamination in Indoor Floor Dust and Its Correlation with PAHs, Fungi, and Gram+/− Bacteria," IJERPH, MDPI, vol. 16(19), pages 1-15, September.
    3. Caspah Kamunda & Manny Mathuthu & Morgan Madhuku, 2016. "Health Risk Assessment of Heavy Metals in Soils from Witwatersrand Gold Mining Basin, South Africa," IJERPH, MDPI, vol. 13(7), pages 1-11, June.
    4. Haseeb Tufail Moryani & Shuqiong Kong & Jiangkun Du & Jianguo Bao, 2020. "Health Risk Assessment of Heavy Metals Accumulated on PM 2.5 Fractioned Road Dust from Two Cities of Pakistan," IJERPH, MDPI, vol. 17(19), pages 1-21, September.
    5. Na Li & Weizheng Han & Jie Tang & Jianmin Bian & Siyue Sun & Tiehong Song, 2018. "Pollution Characteristics and Human Health Risks of Elements in Road Dust in Changchun, China," IJERPH, MDPI, vol. 15(9), pages 1-13, August.
    6. Xiaoxia Zheng & Wenji Zhao & Xing Yan & Tongtong Shu & Qiulin Xiong & Fantao Chen, 2015. "Pollution Characteristics and Health Risk Assessment of Airborne Heavy Metals Collected from Beijing Bus Stations," IJERPH, MDPI, vol. 12(8), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minsi Xiao & Shitong Xu & Bing Yang & Guangcong Zeng & Lidan Qian & Haiwei Huang & Sili Ren, 2022. "Contamination, Source Apportionment, and Health Risk Assessment of Heavy Metals in Farmland Soils Surrounding a Typical Copper Tailings Pond," IJERPH, MDPI, vol. 19(21), pages 1-15, November.
    2. Busisiwe Shezi & Renée Anne Street & Candice Webster & Zamantimande Kunene & Angela Mathee, 2022. "Heavy Metal Contamination of Soil in Preschool Facilities around Industrial Operations, Kuils River, Cape Town (South Africa)," IJERPH, MDPI, vol. 19(7), pages 1-14, April.
    3. Enkhchimeg Battsengel & Takehiko Murayama & Keisuke Fukushi & Shigeo Nishikizawa & Sonomdagva Chonokhuu & Altansukh Ochir & Solongo Tsetsgee & Davaadorj Davaasuren, 2020. "Ecological and Human Health Risk Assessment of Heavy Metal Pollution in the Soil of the Ger District in Ulaanbaatar, Mongolia," IJERPH, MDPI, vol. 17(13), pages 1-21, June.
    4. Iyioluwa Busuyi Raji & Emile Hoffmann & Adeline Ngie & Frank Winde, 2021. "Assessing Uranium Pollution Levels in the Rietspruit River, Far West Rand Goldfield, South Africa," IJERPH, MDPI, vol. 18(16), pages 1-12, August.
    5. Marcelo Sampaio Ocampos & Luana Carolina Santos Leite & Elaine Silva de Pádua Melo & Rita de Cássia Avellaneda Guimarães & Rodrigo Juliano Oliveira & Karine de Cássia Freitas & Priscila Aiko Hiane & A, 2023. "Indirect Methods to Determine the Risk of Damage to the Health of Firefighters and Children Due to Exposure to Smoke Emission from Burning Wood/Coal in a Controlled Environment," IJERPH, MDPI, vol. 20(8), pages 1-20, April.
    6. Zhen Wang & Jianguo Bao & Tong Wang & Haseeb Tufail Moryani & Wei Kang & Jin Zheng & Changlin Zhan & Wensheng Xiao, 2021. "Hazardous Heavy Metals Accumulation and Health Risk Assessment of Different Vegetable Species in Contaminated Soils from a Typical Mining City, Central China," IJERPH, MDPI, vol. 18(5), pages 1-18, March.
    7. Mushtaq Ahmad & Jing Chen & Qing Yu & Muhammad Tariq Khan & Syed Weqas Ali & Asim Nawab & Worradorn Phairuang & Sirima Panyametheekul, 2023. "Characteristics and Risk Assessment of Environmentally Persistent Free Radicals (EPFRs) of PM 2.5 in Lahore, Pakistan," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    8. Felica R. Davis & Hanan H. Ali & Jason A. Rosenzweig & Daniel Vrinceanu & Balaji Bhaskar Maruthi Sridhar, 2021. "Characterization of Chemical and Bacterial Concentrations in Floor Dust Samples in Southeast Texas Households," IJERPH, MDPI, vol. 18(23), pages 1-17, November.
    9. Yumara Martín-Cruz & Álvaro Gómez-Losada, 2023. "Risk Assessment and Source Apportionment of Metals on Atmospheric Particulate Matter in a Suburban Background Area of Gran Canaria (Spain)," IJERPH, MDPI, vol. 20(10), pages 1-18, May.
    10. Ababo Workineh Tadesse & Tekleweini Gereslassie & Qiang Xu & Xiaojun Tang & Jun Wang, 2018. "Concentrations, Distribution, Sources and Ecological Risk Assessment of Trace Elements in Soils from Wuhan, Central China," IJERPH, MDPI, vol. 15(12), pages 1-19, December.
    11. Jaeseok Heo & Yelim Jang & Michael Versoza & Gihwan Kim & Duckshin Park, 2021. "A New Method of Removing Fine Particulates Using an Electrostatic Force," IJERPH, MDPI, vol. 18(12), pages 1-10, June.
    12. Walter Bravo-Zevallos & Yadira Fernández-Jerí & Juan C. Torres-Lázaro & Karol Zuñiga-Bardales, 2024. "Assessment of Human Health Risk Indices Due to Metal Contamination in the Surface Water of the Negro River Sub-Basin, Áncash," IJERPH, MDPI, vol. 21(6), pages 1-20, June.
    13. Rui Yu & Zhengwu Cui & Nana Luo & Yong Yu, 2022. "Pollution Characteristics and Carcinogenic Risk Assessment of PAHs in Car Dust Collected from Commercial Car Wash in Changchun, Northeast China," Sustainability, MDPI, vol. 14(22), pages 1-11, November.
    14. Shakeel Ahmad & Fazal Hadi & Amin Ullah Jan & Raza Ullah & Bedur Faleh A. Albalawi & Allah Ditta, 2022. "Appraisal of Heavy Metals Accumulation, Physiological Response, and Human Health Risks of Five Crop Species Grown at Various Distances from Traffic Highway," Sustainability, MDPI, vol. 14(23), pages 1-18, December.
    15. Joshua O. Olowoyo & Ntebo Lion & Tshoni Unathi & Oluwaseun M. Oladeji, 2022. "Concentrations of Pb and Other Associated Elements in Soil Dust 15 Years after the Introduction of Unleaded Fuel and the Human Health Implications in Pretoria, South Africa," IJERPH, MDPI, vol. 19(16), pages 1-17, August.
    16. Mirela Miclean & Oana Cadar & Erika Andrea Levei & Radu Roman & Alexandru Ozunu & Levente Levei, 2019. "Metal (Pb, Cu, Cd, and Zn) Transfer along Food Chain and Health Risk Assessment through Raw Milk Consumption from Free-Range Cows," IJERPH, MDPI, vol. 16(21), pages 1-14, October.
    17. Pura Marín-Sanleandro & María José Delgado-Iniesta & Anthony Felipe Sáenz-Segovia & Antonio Sánchez-Navarro, 2023. "Spatial Identification and Hotspots of Ecological Risk from Heavy Metals in Urban Dust in the City of Cartagena, SE Spain," Sustainability, MDPI, vol. 16(1), pages 1-20, December.
    18. Noman Adil & Kamran Ashraf & Masooma Munir & Muhammad Mohiuddin & Asim Abbasi & Umair Riaz & Asad Aslam & Samy A. Marey & Ashraf Atef Hatamleh & Qamar uz Zaman, 2023. "Pesticides, Heavy Metals and Plasticizers: Contamination and Risk Assessment of Drinking-Water Quality," Sustainability, MDPI, vol. 15(17), pages 1-19, September.
    19. Wenbing Luo & Zhongping Deng & Shihu Zhong & Mingjun Deng, 2022. "Trends, Issues and Future Directions of Urban Health Impact Assessment Research: A Systematic Review and Bibliometric Analysis," IJERPH, MDPI, vol. 19(10), pages 1-23, May.
    20. Meiqing Zhu & Lijun Wang & Yu Wang & Jie Zhou & Jie Ding & Wei Li & Yue Xin & Shisuo Fan & Zhen Wang & Yi Wang, 2018. "Biointeractions of Herbicide Atrazine with Human Serum Albumin: UV-Vis, Fluorescence and Circular Dichroism Approaches," IJERPH, MDPI, vol. 15(1), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2687-:d:1055937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.