IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12114-d924537.html
   My bibliography  Save this article

Prediction of Suitable Distribution Area of Plateau pika ( Ochotona curzoniae ) in the Qinghai–Tibet Plateau under Shared Socioeconomic Pathways (SSPs)

Author

Listed:
  • Yinglian Qi

    (School of Geographic Science, Qinghai Normal University, Xining 810008, China)

  • Xiaoyan Pu

    (Medical College, Qinghai University, Xining 810016, China)

  • Yaxiong Li

    (School of Life Science, Qinghai Normal University, Xining 810008, China)

  • Dingai Li

    (School of Life Science, Qinghai Normal University, Xining 810008, China)

  • Mingrui Huang

    (School of Life Science, Qinghai Normal University, Xining 810008, China)

  • Xuan Zheng

    (School of Life Science, Qinghai Normal University, Xining 810008, China)

  • Jiaxin Guo

    (School of Life Science, Qinghai Normal University, Xining 810008, China)

  • Zhi Chen

    (School of Geographic Science, Qinghai Normal University, Xining 810008, China
    School of Life Science, Qinghai Normal University, Xining 810008, China)

Abstract

The Qinghai–Tibet Plateau is one of the regions most strongly affected by climate change. The climate feedback of the distribution of plateau pika, a key species, is closely related to the trophic structure of the plateau ecosystem and the development of agriculture and animal husbandry on the plateau. In order to understand the impact of future climate change on the suitable distribution area of plateau pika, potential suitable distribution areas of Plateau pika were predicted using the MaxEnt model under three climate scenarios (SSP 1-2.6, SSP 2-4.5, and SSP 5-8.5) in the near term (2021–2040) and medium term (2041–2060). The predictions were found to be highly accurate with AUC values of 0.997 and 0.996 for the training and test sets. The main results are as follows: (1) The precipitation of the wettest month (BIO 16), mean diurnal range (BIO 2), slope, elevation, temperature seasonality (BIO 4), and annual mean temperature (BIO 1) were the main influencing factors. (2) In the historical period, the total suitable distribution area of Plateau pika in the Qinghai–Tibet Plateau accounted for 29.90% of the total area at approximately 74.74 × 10 4 km 2 , concentrated in the eastern and central areas of the Qinghai–Tibet Plateau. (3) The total suitable distribution area of pika exhibited an expansion trend under SSP 1-2.6 and SSP 2-4.5 in the near term (2021–2040), and the expansion area was concentrated in the eastern and central parts of the Qinghai–Tibet Plateau. The expansion area was the largest in Qinghai Province, followed by Sichuan Province and Tibet. In contrast, the suitable distribution area shrank in the Altun Mountains, Xinjiang. Under SSP 5-8.5 in the near term and all scenarios in the medium term (2041–2060), the suitable distribution area of Plateau pika decreased to different degrees. The shrinkage area was concentrated at the margin of the Qaidam Basin, central Tibet, and the Qilian Mountains in the east of Qinghai Province. (4) Plateau pika migrated toward the east or southeast on the Qinghai–Tibet Plateau under the three climate scenarios. Under most of the scenarios, the migration distance was longer in the medium term than in the near term.

Suggested Citation

  • Yinglian Qi & Xiaoyan Pu & Yaxiong Li & Dingai Li & Mingrui Huang & Xuan Zheng & Jiaxin Guo & Zhi Chen, 2022. "Prediction of Suitable Distribution Area of Plateau pika ( Ochotona curzoniae ) in the Qinghai–Tibet Plateau under Shared Socioeconomic Pathways (SSPs)," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12114-:d:924537
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12114/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12114/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng Su & Anyu Zhang & Ran Wang & Jing’ai Wang & Yuan Gao & Fenggui Liu, 2021. "Prediction of Future Natural Suitable Areas for Rice under Representative Concentration Pathways (RCPs)," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    2. Norman Myers & Russell A. Mittermeier & Cristina G. Mittermeier & Gustavo A. B. da Fonseca & Jennifer Kent, 2000. "Biodiversity hotspots for conservation priorities," Nature, Nature, vol. 403(6772), pages 853-858, February.
    3. Veronika Eyring & Peter M. Cox & Gregory M. Flato & Peter J. Gleckler & Gab Abramowitz & Peter Caldwell & William D. Collins & Bettina K. Gier & Alex D. Hall & Forrest M. Hoffman & George C. Hurtt & A, 2019. "Taking climate model evaluation to the next level," Nature Climate Change, Nature, vol. 9(2), pages 102-110, February.
    4. Boria, Robert A. & Olson, Link E. & Goodman, Steven M. & Anderson, Robert P., 2014. "Spatial filtering to reduce sampling bias can improve the performance of ecological niche models," Ecological Modelling, Elsevier, vol. 275(C), pages 73-77.
    5. Weidong Ma & Wei Jia & Yuantao Zhou & Fenggui Liu & Jing’ai Wang, 2022. "Prediction of Suitable Future Natural Areas for Highland Barley on the Qinghai-Tibet Plateau under Representative Concentration Pathways (RCPs)," Sustainability, MDPI, vol. 14(11), pages 1-21, May.
    6. Peterson, A. Townsend & Papeş, Monica & Soberón, Jorge, 2008. "Rethinking receiver operating characteristic analysis applications in ecological niche modeling," Ecological Modelling, Elsevier, vol. 213(1), pages 63-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Dong & Ningning Zhang & Simin Shen & Shixin Zhu & Saibin Fan & Yang Lu, 2023. "Effects of Climate Change on the Spatial Distribution of the Threatened Species Rhododendron purdomii in Qinling-Daba Mountains of Central China: Implications for Conservation," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    2. Qinghui An & Jianghua Zheng & Jingyun Guan & Jianguo Wu & Jun Lin & Xifeng Ju & Rui Wu, 2023. "Predicting the Effects of Future Climate Change on the Potential Distribution of Eolagurus luteus in Xinjiang," Sustainability, MDPI, vol. 15(10), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    2. Ramos, Rodrigo Soares & Kumar, Lalit & Shabani, Farzin & Picanço, Marcelo Coutinho, 2019. "Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 524-535.
    3. Feng Dong & Chih-Ming Hung & Shou-Hsien Li & Xiao-Jun Yang, 2021. "Potential Himalayan community turnover through the Late Pleistocene," Climatic Change, Springer, vol. 164(1), pages 1-10, January.
    4. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    5. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    6. Sutton, G.F. & Martin, G.D., 2022. "Testing MaxEnt model performance in a novel geographic region using an intentionally introduced insect," Ecological Modelling, Elsevier, vol. 473(C).
    7. Minerva Singh & Jessamine Badcock-Scruton & C. Matilda Collins, 2021. "What Will Remain? Predicting the Representation in Protected Areas of Suitable Habitat for Endangered Tropical Avifauna in Borneo under a Combined Climate- and Land-Use Change Scenario," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    8. José-Silva, Leandro & dos Santos, Reginaldo Carvalho & de Lima, Bruna Martins & Lima, Mendelson & de Oliveira-Júnior, José Francisco & Teodoro, Paulo Eduardo & Eisenlohr, Pedro V. & da Silva Junior, C, 2018. "Improving the validation of ecological niche models with remote sensing analysis," Ecological Modelling, Elsevier, vol. 380(C), pages 22-30.
    9. Ji-Zhong Wan & Chun-Jing Wang & Fei-Hai Yu, 2017. "Spatial conservation prioritization for dominant tree species of Chinese forest communities under climate change," Climatic Change, Springer, vol. 144(2), pages 303-316, September.
    10. Regina Gabriela Medina & Andrés Lira-Noriega & Ezequiel Aráoz & María Laura Ponssa, 2020. "Potential effects of climate change on a Neotropical frog genus: changes in the spatial diversity patterns of Leptodactylus (Anura, Leptodactylidae) and implications for their conservation," Climatic Change, Springer, vol. 161(4), pages 535-553, August.
    11. Carlos Mestanza-Ramón & Robinson J. Herrera Feijoo & Cristhian Chicaiza-Ortiz & Isabel Domínguez Gaibor & Rubén G. Mateo, 2021. "Estimation of Current and Future Suitable Areas for Tapirus pinchaque in Ecuador," Sustainability, MDPI, vol. 13(20), pages 1-14, October.
    12. Ali Uğur Özcan & Javier Velázquez & Víctor Rincón & Derya Gülçin & Kerim Çiçek, 2022. "Assessment of the Morphological Pattern of the Lebanon Cedar under Changing Climate: The Mediterranean Case," Land, MDPI, vol. 11(6), pages 1-18, May.
    13. Laxmi D. Bhatta & Sunita Chaudhary & Anju Pandit & Himlal Baral & Partha J. Das & Nigel E. Stork, 2016. "Ecosystem Service Changes and Livelihood Impacts in the Maguri-Motapung Wetlands of Assam, India," Land, MDPI, vol. 5(2), pages 1-14, June.
    14. McLennan, D. & Sharma, R., 2012. "The Delivering Ecological Services Index (DESI)," Working papers 119, Rimisp Latin American Center for Rural Development.
    15. Wiltshire, Kathryn H & Tanner, Jason E, 2020. "Comparing maximum entropy modelling methods to inform aquaculture site selection for novel seaweed species," Ecological Modelling, Elsevier, vol. 429(C).
    16. Meng Guo & Shukai Cai, 2022. "Impact of Green Innovation Efficiency on Carbon Peak: Carbon Neutralization under Environmental Governance Constraints," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
    17. Caviedes, Julián & Ibarra, José Tomás & Calvet-Mir, Laura & Álvarez-Fernández, Santiago & Junqueira, André Braga, 2024. "Indigenous and local knowledge on social-ecological changes is positively associated with livelihood resilience in a Globally Important Agricultural Heritage System," Agricultural Systems, Elsevier, vol. 216(C).
    18. Maeda, Eduardo Eiji & Clark, Barnaby J.F. & Pellikka, Petri & Siljander, Mika, 2010. "Modelling agricultural expansion in Kenya's Eastern Arc Mountains biodiversity hotspot," Agricultural Systems, Elsevier, vol. 103(9), pages 609-620, November.
    19. Jaiswal, Sreeja & Balietti, Anca & Schäffer, Daniel, 2023. "Environmental Protection and Labor Market Composition," Working Papers 0736, University of Heidelberg, Department of Economics.
    20. Chomitz, Kenneth M. & Thomas, Timothy S. & Brandão, Antônio Salazar P., 2005. "The economic and environmental impact of trade in forest reserve obligations: a simulation analysis of options for dealing with habitat heterogeneity," Revista de Economia e Sociologia Rural (RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 43(4), January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12114-:d:924537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.