IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2792-d510784.html
   My bibliography  Save this article

What Will Remain? Predicting the Representation in Protected Areas of Suitable Habitat for Endangered Tropical Avifauna in Borneo under a Combined Climate- and Land-Use Change Scenario

Author

Listed:
  • Minerva Singh

    (The Centre for Environmental Policy, Imperial College London, London SW7 1NE, UK)

  • Jessamine Badcock-Scruton

    (The Centre for Environmental Policy, Imperial College London, London SW7 1NE, UK)

  • C. Matilda Collins

    (The Centre for Environmental Policy, Imperial College London, London SW7 1NE, UK)

Abstract

The responses of threatened tropical avian species to projected climate change and land-use change are important for evaluating the ability of the existing protected areas to provide habitat to these species under future scenarios in biodiversity hotspots. This study uses Maxent, a species distribution model that employs a maximum entropy machine learning approach to map the spatial distributions of habitats suitable for the International Union for Conservation of Nature threatened birds under present and future climate and land-use change in Borneo. We find that the existing protected areas provide very low coverage of the threatened bird species’ suitable habitat areas (95%CI = 9.3–15.4%). Analysis of habitat suitability projections for 18 species of threatened birds suggests that in 2050, under Special Report on Emissions Scenarios A1B and B1, avian species with currently little suitable habitat may gain area but lose in the proportion of this that is protected. Large-ranged species are likely to lose habitat area and this will inflate the proportion of this remaining in protected areas. The present availability of suitable habitat was the most important determinant of future habitat availability under both the scenarios. Threat level, as measured by the International Union for Conservation of Nature and the habitat preferences considered here, Lowland or Lowland–Montane, are poor predictors of the amount of habitat contraction or expansion undergone by the species.

Suggested Citation

  • Minerva Singh & Jessamine Badcock-Scruton & C. Matilda Collins, 2021. "What Will Remain? Predicting the Representation in Protected Areas of Suitable Habitat for Endangered Tropical Avifauna in Borneo under a Combined Climate- and Land-Use Change Scenario," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2792-:d:510784
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Norman Myers & Russell A. Mittermeier & Cristina G. Mittermeier & Gustavo A. B. da Fonseca & Jennifer Kent, 2000. "Biodiversity hotspots for conservation priorities," Nature, Nature, vol. 403(6772), pages 853-858, February.
    2. Xia Li & Guangzhao Chen & Xiaoping Liu & Xun Liang & Shaojian Wang & Yimin Chen & Fengsong Pei & Xiaocong Xu, 2017. "A New Global Land-Use and Land-Cover Change Product at a 1-km Resolution for 2010 to 2100 Based on Human–Environment Interactions," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 107(5), pages 1040-1059, September.
    3. Sharma, Sunil K. & Baral, Himlal & Laumonier, Yves & Okarda, Beni & Komarudin, Heru & Purnomo, Herry & Pacheco, Pablo, 2019. "Ecosystem services under future oil palm expansion scenarios in West Kalimantan, Indonesia," Ecosystem Services, Elsevier, vol. 39(C).
    4. Ivo Machar & Karel Poprach & Jaromir Harmacek & Jitka Fialova, 2019. "Bird Diversity as a Support Decision Tool for Sustainable Management in Temperate Forested Floodplain Landscapes," Sustainability, MDPI, vol. 11(6), pages 1-15, March.
    5. Luciana L Porfirio & Rebecca M B Harris & Edward C Lefroy & Sonia Hugh & Susan F Gould & Greg Lee & Nathaniel L Bindoff & Brendan Mackey, 2014. "Improving the Use of Species Distribution Models in Conservation Planning and Management under Climate Change," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-21, November.
    6. Victor Cazalis & Karine Princé & Jean-Baptiste Mihoub & Joseph Kelly & Stuart H. M. Butchart & Ana S. L. Rodrigues, 2020. "Effectiveness of protected areas in conserving tropical forest birds," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    7. Peterson, A. Townsend & Papeş, Monica & Soberón, Jorge, 2008. "Rethinking receiver operating characteristic analysis applications in ecological niche modeling," Ecological Modelling, Elsevier, vol. 213(1), pages 63-72.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuting Bai & Jiuchun Yang & Yubo Zhang & Fengqin Yan & Lingxue Yu & Shuwen Zhang, 2022. "Evaluating Ecosystem Services and Trade-Offs Based on Land-Use Simulation: A Case Study in the Farming–Pastoral Ecotone of Northern China," Land, MDPI, vol. 11(7), pages 1-17, July.
    2. Nguyen, Minh-Hoang, 2023. "Investigating urban residents' involvement in biodiversity conservation in protected areas: Empirical evidence from Vietnam," Thesis Commons z2hjv, Center for Open Science.
    3. Götz Schroth & Peter Läderach & Armando Isaac Martinez-Valle & Christian Bunn, 2017. "From site-level to regional adaptation planning for tropical commodities: cocoa in West Africa," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(6), pages 903-927, August.
    4. Yinglian Qi & Xiaoyan Pu & Yaxiong Li & Dingai Li & Mingrui Huang & Xuan Zheng & Jiaxin Guo & Zhi Chen, 2022. "Prediction of Suitable Distribution Area of Plateau pika ( Ochotona curzoniae ) in the Qinghai–Tibet Plateau under Shared Socioeconomic Pathways (SSPs)," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    5. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    6. Guangdong Li & Chuanglin Fang & Yingjie Li & Zhenbo Wang & Siao Sun & Sanwei He & Wei Qi & Chao Bao & Haitao Ma & Yupeng Fan & Yuxue Feng & Xiaoping Liu, 2022. "Global impacts of future urban expansion on terrestrial vertebrate diversity," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. José-Silva, Leandro & dos Santos, Reginaldo Carvalho & de Lima, Bruna Martins & Lima, Mendelson & de Oliveira-Júnior, José Francisco & Teodoro, Paulo Eduardo & Eisenlohr, Pedro V. & da Silva Junior, C, 2018. "Improving the validation of ecological niche models with remote sensing analysis," Ecological Modelling, Elsevier, vol. 380(C), pages 22-30.
    8. Regina Gabriela Medina & Andrés Lira-Noriega & Ezequiel Aráoz & María Laura Ponssa, 2020. "Potential effects of climate change on a Neotropical frog genus: changes in the spatial diversity patterns of Leptodactylus (Anura, Leptodactylidae) and implications for their conservation," Climatic Change, Springer, vol. 161(4), pages 535-553, August.
    9. Laxmi D. Bhatta & Sunita Chaudhary & Anju Pandit & Himlal Baral & Partha J. Das & Nigel E. Stork, 2016. "Ecosystem Service Changes and Livelihood Impacts in the Maguri-Motapung Wetlands of Assam, India," Land, MDPI, vol. 5(2), pages 1-14, June.
    10. McLennan, D. & Sharma, R., 2012. "The Delivering Ecological Services Index (DESI)," Working papers 119, Rimisp Latin American Center for Rural Development.
    11. Wiltshire, Kathryn H & Tanner, Jason E, 2020. "Comparing maximum entropy modelling methods to inform aquaculture site selection for novel seaweed species," Ecological Modelling, Elsevier, vol. 429(C).
    12. Caviedes, Julián & Ibarra, José Tomás & Calvet-Mir, Laura & Álvarez-Fernández, Santiago & Junqueira, André Braga, 2024. "Indigenous and local knowledge on social-ecological changes is positively associated with livelihood resilience in a Globally Important Agricultural Heritage System," Agricultural Systems, Elsevier, vol. 216(C).
    13. Maeda, Eduardo Eiji & Clark, Barnaby J.F. & Pellikka, Petri & Siljander, Mika, 2010. "Modelling agricultural expansion in Kenya's Eastern Arc Mountains biodiversity hotspot," Agricultural Systems, Elsevier, vol. 103(9), pages 609-620, November.
    14. Jaiswal, Sreeja & Balietti, Anca & Schäffer, Daniel, 2023. "Environmental Protection and Labor Market Composition," Working Papers 0736, University of Heidelberg, Department of Economics.
    15. Chomitz, Kenneth M. & Thomas, Timothy S. & Brandão, Antônio Salazar P., 2005. "The economic and environmental impact of trade in forest reserve obligations: a simulation analysis of options for dealing with habitat heterogeneity," Revista de Economia e Sociologia Rural (RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 43(4), January.
    16. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    17. Wongsathit Wongloet & Prach Kongthong & Aingorn Chaiyes & Worapong Singchat & Warong Suksavate & Nattakan Ariyaraphong & Thitipong Panthum & Artem Lisachov & Kitipong Jaisamut & Jumaporn Sonongbua & T, 2023. "Genetic Monitoring of the Last Captive Population of Greater Mouse-Deer on the Thai Mainland and Prediction of Habitat Suitability before Reintroduction," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    18. Inês Silva & Matthew Crane & Pongthep Suwanwaree & Colin Strine & Matt Goode, 2018. "Using dynamic Brownian Bridge Movement Models to identify home range size and movement patterns in king cobras," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-20, September.
    19. Elisa Barbour & Lara Kueppers, 2012. "Conservation and management of ecological systems in a changing California," Climatic Change, Springer, vol. 111(1), pages 135-163, March.
    20. Tyler M Harms & Kevin T Murphy & Xiaodan Lyu & Shane S Patterson & Karen E Kinkead & Stephen J Dinsmore & Paul W Frese, 2017. "Using landscape habitat associations to prioritize areas of conservation action for terrestrial birds," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2792-:d:510784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.