IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p11068-d906959.html
   My bibliography  Save this article

A Hybrid Method for Traffic State Classification Using K-Medoids Clustering and Self-Tuning Spectral Clustering

Author

Listed:
  • Qiang Shang

    (School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China)

  • Yang Yu

    (School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China)

  • Tian Xie

    (School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China)

Abstract

As an important part of intelligent transportation systems, traffic state classification plays a vital role for traffic managers when formulating measures to alleviate traffic congestion. The proliferation of traffic data brings new opportunities for traffic state classification. In this paper, we propose a hybrid new traffic state classification method based on unsupervised clustering. Firstly, the k-medoids clustering algorithm is used to cluster the daily traffic speed data from multiple detection points in the selected area, and then the cluster-center detection points of the cluster with congestion are selected for further analysis. Then, the self-tuning spectral clustering algorithm is used to cluster the speed, flow, and occupancy data of the target detection point to obtain the traffic state classification results. Finally, several state-of-the-art methods are introduced for comparison, and the results show that performance of the proposed method are superior to comparable methods.

Suggested Citation

  • Qiang Shang & Yang Yu & Tian Xie, 2022. "A Hybrid Method for Traffic State Classification Using K-Medoids Clustering and Self-Tuning Spectral Clustering," Sustainability, MDPI, vol. 14(17), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:11068-:d:906959
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/11068/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/11068/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kerner, Boris S., 2004. "Three-phase traffic theory and highway capacity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 379-440.
    2. Kaffash, Sepideh & Nguyen, An Truong & Zhu, Joe, 2021. "Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 231(C).
    3. Cheng, Zeyang & Wang, Wei & Lu, Jian & Xing, Xue, 2020. "Classifying the traffic state of urban expressways: A machine-learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 411-428.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minh Sang Pham Do & Ketoma Vix Kemanji & Man Dinh Vinh Nguyen & Tuan Anh Vu & Gerrit Meixner, 2023. "The Action Point Angle of Sight: A Traffic Generation Method for Driving Simulation, as a Small Step to Safe, Sustainable and Smart Cities," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    2. Huiming Duan & Xinping Xiao & Lingling Pei, 2017. "Forecasting the Short-Term Traffic Flow in the Intelligent Transportation System Based on an Inertia Nonhomogenous Discrete Gray Model," Complexity, Hindawi, vol. 2017, pages 1-16, July.
    3. Zhou, Shirui & Ling, Shuai & Zhu, Chenqiang & Tian, Junfang, 2022. "Cellular automaton model with the multi-anticipative effect to reproduce the empirical findings of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    4. Ayelet Gal-Tzur & Sivan Albagli-Kim, 2023. "Systematic Analysis of the Literature Addressing the Use of Machine Learning Techniques in Transportation—A Methodology and Its Application," Sustainability, MDPI, vol. 16(1), pages 1-19, December.
    5. Wang, Lichao & Yang, Min & Li, Ye & Hou, Yiqi, 2022. "A model of lane-changing intention induced by deceleration frequency in an automatic driving environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    6. M. Azizur Rahman & Al-Amin Hossain & Binoy Debnath & Zinnat Mahmud Zefat & Mohammad Sarwar Morshed & Ziaul Haq Adnan, 2021. "Intelligent Vehicle Scheduling and Routing for a Chain of Retail Stores: A Case Study of Dhaka, Bangladesh," Logistics, MDPI, vol. 5(3), pages 1-21, September.
    7. Feng, Hailin & Lv, Haibin & Lv, Zhihan, 2023. "Resilience towarded Digital Twins to improve the adaptability of transportation systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    8. Hu, Xiaojian & Hao, Xiatong & Wang, Han & Su, Ziyi & Zhang, Fang, 2020. "Research on on-street temporary parking effects based on cellular automaton model under the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    9. Jiabei He & Xuchong Liu & Fan Wu & Chaoyang Chen & Xiong Li, 2022. "A mutual authentication scheme in VANET providing vehicular anonymity and tracking," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 81(2), pages 175-190, October.
    10. Redhu, Poonam & Gupta, Arvind Kumar, 2016. "Effect of forward looking sites on a multi-phase lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 150-160.
    11. Han, Yu & Zhang, Mingyu & Guo, Yanyong & Zhang, Le, 2022. "A streaming-data-driven method for freeway traffic state estimation using probe vehicle trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    12. Miguel F. Arevalo-Castiblanco & Jaime Pachon & Duvan Tellez-Castro & Eduardo Mojica-Nava, 2023. "Cooperative Cruise Control for Intelligent Connected Vehicles: A Bargaining Game Approach," Sustainability, MDPI, vol. 15(15), pages 1-21, August.
    13. Zhaoqi Zang & Xiangdong Xu & Anthony Chen & Chao Yang, 2022. "Modeling the α-max capacity of transportation networks: a single-level mathematical programming formulation," Transportation, Springer, vol. 49(4), pages 1211-1243, August.
    14. Zhou, Chang & Li, Xiang & Chen, Lujie, 2023. "Modelling the effects of metro and bike-sharing cooperation: Cost-sharing mode vs information-sharing mode," International Journal of Production Economics, Elsevier, vol. 261(C).
    15. Xia, Dong & Zheng, Linjiang & Tang, Yi & Cai, Xiaolin & Chen, Li & Sun, Dihua, 2022. "Dynamic traffic prediction for urban road network with the interpretable model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    16. Junwei Zeng & Yongsheng Qian & Fan Yin & Leipeng Zhu & Dejie Xu, 2022. "A multi-value cellular automata model for multi-lane traffic flow under lagrange coordinate," Computational and Mathematical Organization Theory, Springer, vol. 28(2), pages 178-192, June.
    17. Zhengbo Hao & Yizhe Wang & Xiaoguang Yang, 2024. "Every Second Counts: A Comprehensive Review of Route Optimization and Priority Control for Urban Emergency Vehicles," Sustainability, MDPI, vol. 16(7), pages 1-25, March.
    18. Karen Castañeda & Omar Sánchez & Rodrigo F. Herrera & Guillermo Mejía, 2022. "Highway Planning Trends: A Bibliometric Analysis," Sustainability, MDPI, vol. 14(9), pages 1-33, May.
    19. Jing, Dian & Yao, Enjian & Chen, Rongsheng, 2023. "Moving characteristics analysis of mixed traffic flow of CAVs and HVs around accident zones," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    20. Yeo, Hwasoo, 2008. "Asymmetric Microscopic Driving Behavior Theory," University of California Transportation Center, Working Papers qt1tn1m968, University of California Transportation Center.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:11068-:d:906959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.