IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i4p1475-d1588727.html
   My bibliography  Save this article

Exploring Knowledge Domain of Intelligent Safety and Security Studies by Bibliometric Analysis

Author

Listed:
  • Ting Mei

    (College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China)

  • Hui Liu

    (College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China)

  • Bingrui Tong

    (College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China)

  • Chaozhen Tong

    (Ningbo Qianye Safety Science & Technology Co., Ningbo 315042, China)

  • Junjie Zhu

    (College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China)

  • Yuxuan Wang

    (College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China)

  • Mengyao Kou

    (College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China)

Abstract

Intelligent safety and security is significant for preventing risks, ensuring information security and promoting sustainable social development, making it an indispensable part of modern society. Current research primarily focuses on the knowledge base and research hotspots in the field of intelligent safety and security. However, a comprehensive mapping of its overall knowledge structure remains lacking. A total of 1400 publications from the Web of Science Core Collection (2013–2023) are analyzed using VOSviewer and CiteSpace, through which co-occurrence analysis, keyword burst detection, and co-citation analysis are conducted. Through this approach, this analysis systematically uncovers the core themes, evolutionary trajectories, and emerging trends in intelligent safety and security research. Unlike previous bibliometric studies, this study is the first to integrate multiple visualization techniques to construct a holistic framework of the intelligent safety and security knowledge system. Additionally, it offers an in-depth analysis of key topics such as IoT security, intelligent transportation systems, smart cities, and smart grids, providing quantitative insights to guide future research directions. The results show that the most significant number of publications are from China; the top position on the list of papers published by related institutions is occupied by King Saud University from Saudi Arabia. Renewable and Sustainable Energy Reviews , Sustainable Cities and Society , and IEEE Transactions on Intelligent Transportation Systems are identified as the leading publications in this field. The decentralization of blockchain technology, the security and challenges of the Internet of Things (IoT), and research on intelligent cities and smart homes have formed the knowledge base for innovative security research. The four key directions of intelligent safety and security research mainly comprise IoT security, intelligent transportation systems, traffic safety and its far-reaching impact, and the utilization of smart grids and renewable energy. Research on IoT technology, security, and limitations is at the forefront of interest in this area.

Suggested Citation

  • Ting Mei & Hui Liu & Bingrui Tong & Chaozhen Tong & Junjie Zhu & Yuxuan Wang & Mengyao Kou, 2025. "Exploring Knowledge Domain of Intelligent Safety and Security Studies by Bibliometric Analysis," Sustainability, MDPI, vol. 17(4), pages 1-26, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1475-:d:1588727
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/4/1475/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/4/1475/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuo Feng & Haowei Sun & Xintao Yan & Haojie Zhu & Zhengxia Zou & Shengyin Shen & Henry X. Liu, 2023. "Dense reinforcement learning for safety validation of autonomous vehicles," Nature, Nature, vol. 615(7953), pages 620-627, March.
    2. Balta-Ozkan, Nazmiye & Davidson, Rosemary & Bicket, Martha & Whitmarsh, Lorraine, 2013. "Social barriers to the adoption of smart homes," Energy Policy, Elsevier, vol. 63(C), pages 363-374.
    3. Vito Albino & Umberto Berardi & Rosa Maria Dangelico, 2015. "Smart Cities: Definitions, Dimensions, Performance, and Initiatives," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(1), pages 3-21, January.
    4. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    5. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    6. Kaffash, Sepideh & Nguyen, An Truong & Zhu, Joe, 2021. "Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 231(C).
    7. Marikyan, Davit & Papagiannidis, Savvas & Alamanos, Eleftherios, 2019. "A systematic review of the smart home literature: A user perspective," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 139-154.
    8. Dan Liu & Siqi Che & Wenzhong Zhu, 2022. "Visualizing the Knowledge Domain of Academic Mobility Research from 2010 to 2020: A Bibliometric Analysis Using CiteSpace," SAGE Open, , vol. 12(1), pages 21582440211, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Attour, Amel & Baudino, Marco & Krafft, Jackie & Lazaric, Nathalie, 2020. "Determinants of energy tracking application use at the city level: Evidence from France," Energy Policy, Elsevier, vol. 147(C).
    2. Amel Attour & Marco Baudino & Jackie Krafft & Nathalie Lazaric, 2020. "Determinants of smart energy tracking application use at the city level: Evidence from France," Post-Print hal-02942483, HAL.
    3. Qian Wang & Shixian Luo & Jiao Zhang & Katsunori Furuya, 2022. "Increased Attention to Smart Development in Rural Areas: A Scientometric Analysis of Smart Village Research," Land, MDPI, vol. 11(8), pages 1-28, August.
    4. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    5. Li Zhao & Zhi-ying Tang & Xin Zou, 2019. "Mapping the Knowledge Domain of Smart-City Research: A Bibliometric and Scientometric Analysis," Sustainability, MDPI, vol. 11(23), pages 1-28, November.
    6. Carolina Navarro-Lopez & Salvador Linares-Mustaros & Carles Mulet-Forteza, 2022. "“The Statistical Analysis of Compositional Data†by John Aitchison (1986): A Bibliometric Overview," SAGE Open, , vol. 12(2), pages 21582440221, April.
    7. Piñeiro-Chousa, Juan & López-Cabarcos, M. Ángeles & Romero-Castro, Noelia María & Pérez-Pico, Ada María, 2020. "Innovation, entrepreneurship and knowledge in the business scientific field: Mapping the research front," Journal of Business Research, Elsevier, vol. 115(C), pages 475-485.
    8. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    9. Filippo Corsini & Rafael Laurenti & Franziska Meinherz & Francesco Paolo Appio & Luca Mora, 2019. "The Advent of Practice Theories in Research on Sustainable Consumption: Past, Current and Future Directions of the Field," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
    10. Giovanni Matteo & Pierfrancesco Nardi & Stefano Grego & Caterina Guidi, 2018. "Bibliometric analysis of Climate Change Vulnerability Assessment research," Environment Systems and Decisions, Springer, vol. 38(4), pages 508-516, December.
    11. Gallego-Losada, María-Jesús & Montero-Navarro, Antonio & García-Abajo, Elisa & Gallego-Losada, Rocío, 2023. "Digital financial inclusion. Visualizing the academic literature," Research in International Business and Finance, Elsevier, vol. 64(C).
    12. Zhichao Wang & Valentin Zelenyuk, 2021. "Performance Analysis of Hospitals in Australia and its Peers: A Systematic Review," CEPA Working Papers Series WP012021, School of Economics, University of Queensland, Australia.
    13. Petr Iakovlevitch Ekel & Sandro Laudares & Adriano José de Barros & Douglas Alexandre Gomes Vieira & Carlos Augusto Paiva da Silva Martins & Matheus Pereira Libório, 2023. "Geovisualization: A Practical Approach for COVID-19 Spatial Analysis," Geographies, MDPI, vol. 3(4), pages 1-16, December.
    14. Ignacio Rodríguez-Rodríguez & José-Víctor Rodríguez & Niloofar Shirvanizadeh & Andrés Ortiz & Domingo-Javier Pardo-Quiles, 2021. "Applications of Artificial Intelligence, Machine Learning, Big Data and the Internet of Things to the COVID-19 Pandemic: A Scientometric Review Using Text Mining," IJERPH, MDPI, vol. 18(16), pages 1-29, August.
    15. Yi-Ming Guo & Zhen-Ling Huang & Ji Guo & Hua Li & Xing-Rong Guo & Mpeoane Judith Nkeli, 2019. "Bibliometric Analysis on Smart Cities Research," Sustainability, MDPI, vol. 11(13), pages 1-18, June.
    16. Germán López Pérez & Isabel María García Sánchez & José Luis Zafra Gómez, 2024. "A systematic literature review and bibliometric analysis of eco‐innovation on financial performance: Identifying barriers and drivers," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 1321-1340, February.
    17. Ooms, Tahnee & Klaser, Klaudijo & Ishkanian, Armine, 2023. "The role of academia practice partnerships in the well-being economy: Retracing synergies between health and social sciences using bibliometric analysis," Health Policy, Elsevier, vol. 138(C).
    18. Raymundo das Neves Machado & Benjamín Vargas-Quesada & Jacqueline Leta, 2016. "Intellectual structure in stem cell research: exploring Brazilian scientific articles from 2001 to 2010," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 525-537, February.
    19. Younjoo Cho & Anseop Choi, 2020. "Application of Affordance Factors for User-Centered Smart Homes: A Case Study Approach," Sustainability, MDPI, vol. 12(7), pages 1-23, April.
    20. Priya Shah & Richa Singh Dubey & Shashikant Rai & Douglas W. S. Renwick & Saurabh Misra, 2024. "Green human resource management: A comprehensive investigation using bibliometric analysis," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(1), pages 31-53, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1475-:d:1588727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.