IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v605y2022ics0378437122006562.html
   My bibliography  Save this article

Dynamic traffic prediction for urban road network with the interpretable model

Author

Listed:
  • Xia, Dong
  • Zheng, Linjiang
  • Tang, Yi
  • Cai, Xiaolin
  • Chen, Li
  • Sun, Dihua

Abstract

Dynamic traffic prediction is an important section of the urban intelligent transportation system. Although there have been many studies in this area, it is still a challenge for the urban road network considering the complexity of urban traffic and the lack of high-quality traffic data. Electronic Registration Identification of Vehicles (ERI) is an emerging traffic information acquisition technology based on Radio Frequency Identification (RFID). It can identify each vehicle accurately and generate high-quality traffic data. We employ ERI data to realize the dynamic prediction of traffic density and travel time for the urban road network. First of all, we study the temporal characteristics model of traffic through the Markov chain. Secondly, combining the Expectation–Maximization algorithm and logistic regression classifier, we classify the training data into different traffic scenes and build the spatial characteristics model for each traffic scene. The model parameters are obtained by the particle swarm optimization algorithm. Then, the trained temporal and spatial models are combined to conduct dynamic traffic prediction. Finally, the real data of Chongqing is utilized to verify the proposed method. The experimental results show that the proposed method has a good prediction accuracy and is suitable for all kinds of roads in the road network. Besides, the constructed model has good interpretability for real traffic.

Suggested Citation

  • Xia, Dong & Zheng, Linjiang & Tang, Yi & Cai, Xiaolin & Chen, Li & Sun, Dihua, 2022. "Dynamic traffic prediction for urban road network with the interpretable model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
  • Handle: RePEc:eee:phsmap:v:605:y:2022:i:c:s0378437122006562
    DOI: 10.1016/j.physa.2022.128051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122006562
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Jinjun & Liu, Fang & Wang, Yinhai & Wang, Hua, 2015. "Uncovering urban human mobility from large scale taxi GPS data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 140-153.
    2. Kerner, Boris S., 2004. "Three-phase traffic theory and highway capacity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 379-440.
    3. Okutani, Iwao & Stephanedes, Yorgos J., 1984. "Dynamic prediction of traffic volume through Kalman filtering theory," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 1-11, February.
    4. Serdar Çolak & Antonio Lima & Marta C. González, 2016. "Understanding congested travel in urban areas," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
    5. Jiang, Shixiong & Guan, Wei & Zhang, Wenyi & Chen, Xu & Yang, Liu, 2017. "Human mobility in space from three modes of public transportation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 227-238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Changxi & Zhao, Mingxi, 2023. "Spatio-temporal multi-graph convolutional network based on wavelet analysis for vehicle speed prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Jie & Xiong, Yong & Liu, Feiyang & Ye, Junqing & Tang, Jinjun, 2022. "Uncovering the spatiotemporal patterns of traffic congestion from large-scale trajectory data: A complex network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    2. Xia, Dawen & Jiang, Shunying & Yang, Nan & Hu, Yang & Li, Yantao & Li, Huaqing & Wang, Lin, 2021. "Discovering spatiotemporal characteristics of passenger travel with mobile trajectory big data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    3. Zheng, Linjiang & Xia, Dong & Zhao, Xin & Tan, Longyou & Li, Hang & Chen, Li & Liu, Weining, 2018. "Spatial–temporal travel pattern mining using massive taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 24-41.
    4. Xing, Tao & Zhou, Xuesong & Taylor, Jeffrey, 2013. "Designing heterogeneous sensor networks for estimating and predicting path travel time dynamics: An information-theoretic modeling approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 66-90.
    5. Huiming Duan & Xinping Xiao & Lingling Pei, 2017. "Forecasting the Short-Term Traffic Flow in the Intelligent Transportation System Based on an Inertia Nonhomogenous Discrete Gray Model," Complexity, Hindawi, vol. 2017, pages 1-16, July.
    6. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    7. Liu, Shan & Zhang, Ya & Wang, Zhengli & Gu, Shiyi, 2023. "AdaBoost-Bagging deep inverse reinforcement learning for autonomous taxi cruising route and speed planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    8. M. Bierlaire & F. Crittin, 2004. "An Efficient Algorithm for Real-Time Estimation and Prediction of Dynamic OD Tables," Operations Research, INFORMS, vol. 52(1), pages 116-127, February.
    9. Amitrajeet A. Batabyal & Hamid Beladi, 2022. "Commuting to work in cities: Bus, car, or train?," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(3), pages 599-609, June.
    10. Vinayak Dixit & Divya Jayakumar Nair & Sai Chand & Michael W Levin, 2020. "A simple crowdsourced delay-based traffic signal control," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-12, April.
    11. Safikhani, Abolfazl & Kamga, Camille & Mudigonda, Sandeep & Faghih, Sabiheh Sadat & Moghimi, Bahman, 2020. "Spatio-temporal modeling of yellow taxi demands in New York City using generalized STAR models," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1138-1148.
    12. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    13. D. Woods & A. Cunningham & C. E. Utazi & M. Bondarenko & L. Shengjie & G. E. Rogers & P. Koper & C. W. Ruktanonchai & E. zu Erbach-Schoenberg & A. J. Tatem & J. Steele & A. Sorichetta, 2022. "Exploring methods for mapping seasonal population changes using mobile phone data," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    14. Balaji Ganesh Rajagopal & Manish Kumar & Pijush Samui & Mosbeh R. Kaloop & Usama Elrawy Shahdah, 2022. "A Hybrid DNN Model for Travel Time Estimation from Spatio-Temporal Features," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    15. Shi, Shuyang & Wang, Lin & Wang, Xiaofan, 2022. "Uncovering the spatiotemporal motif patterns in urban mobility networks by non-negative tensor decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    16. Lu, Xijin & Ma, Changxi & Qiao, Yihuan, 2021. "Short-term demand forecasting for online car-hailing using ConvLSTM networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    17. Yang, Zhuo & Franz, Mark L. & Zhu, Shanjiang & Mahmoudi, Jina & Nasri, Arefeh & Zhang, Lei, 2018. "Analysis of Washington, DC taxi demand using GPS and land-use data," Journal of Transport Geography, Elsevier, vol. 66(C), pages 35-44.
    18. Shenghan Zhou & Chaofan Wei & Chaofei Song & Yu Fu & Rui Luo & Wenbing Chang & Linchao Yang, 2022. "A Hybrid Deep Learning Model for Short-Term Traffic Flow Pre-Diction Considering Spatiotemporal Features," Sustainability, MDPI, vol. 14(16), pages 1-14, August.
    19. Zhai, Linbo & Yang, Yong & Song, Shudian & Ma, Shuyue & Zhu, Xiumin & Yang, Feng, 2021. "Self-supervision Spatiotemporal Part-Whole Convolutional Neural Network for Traffic Prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
    20. Lei Zhang & Guoxing Zhang & Zhizheng Liang & Ekene Frank Ozioko, 2018. "Multi-features taxi destination prediction with frequency domain processing," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:605:y:2022:i:c:s0378437122006562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.