IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2023i1p207-d1307525.html
   My bibliography  Save this article

Systematic Analysis of the Literature Addressing the Use of Machine Learning Techniques in Transportation—A Methodology and Its Application

Author

Listed:
  • Ayelet Gal-Tzur

    (Department of Industrial Engineering and Management, Ruppin Academic Center, Emek Hefer 4025000, Israel
    Research Group in Environmental and Social Sustainability, Ruppin Academic Center, Emek Hefer 4025000, Israel)

  • Sivan Albagli-Kim

    (Department of Computer and Information Sciences, Ruppin Academic Center, Emek Hefer 4025000, Israel
    Dror (Imri) Aloni Center for Health Informatics, Ruppin Academic Center, Emek Hefer 4025000, Israel)

Abstract

Advances in the field of machine learning (ML) have been reflected in the intensity of research studies exploiting these techniques for a better understanding of existing phenomena, and for predicting future ones, as a mean for promoting a more efficient and sustainable transportation system. The present study aims to understand the trends of utilizing diverse ML approaches to tackle issues within sub-domains of transportation and to identify underutilized potentials among them. This paper presents a methodology for the bi-dimensional classification of a large corpus of scientific articles. The articles are classified into six transport-related sub-domains, based on the definition of the Israeli Smart Transport Research Center, whose aim is a transportation system with zero externalities, and the ML techniques used in each of them is identified. A fuzzy KNN model is implemented for the multi-classification of articles into the transportation sub-domains and an ontology-based reasoning for identifying the share of each applied ML approach is employed. The application of these methodologies to a corpus of 1718 articles revealed, among other findings, an increasing share of artificial neural networks and deep learning techniques from 2018 until 2022, particularly in the traffic management sub-domain. A significant contribution of the development of these automatic methodologies is the ability to reuse them for ongoing exploration of trends regarding the use of ML techniques for transportation sub-domains.

Suggested Citation

  • Ayelet Gal-Tzur & Sivan Albagli-Kim, 2023. "Systematic Analysis of the Literature Addressing the Use of Machine Learning Techniques in Transportation—A Methodology and Its Application," Sustainability, MDPI, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:207-:d:1307525
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/207/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/207/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    2. Kaffash, Sepideh & Nguyen, An Truong & Zhu, Joe, 2021. "Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 231(C).
    3. Shu, Fei & Julien, Charles-Antoine & Zhang, Lin & Qiu, Junping & Zhang, Jing & Larivière, Vincent, 2019. "Comparing journal and paper level classifications of science," Journal of Informetrics, Elsevier, vol. 13(1), pages 202-225.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Donner, 2021. "Validation of the Astro dataset clustering solutions with external data," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1619-1645, February.
    2. Lin Zhang & Beibei Sun & Fei Shu & Ying Huang, 2022. "Comparing paper level classifications across different methods and systems: an investigation of Nature publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7633-7651, December.
    3. Rodrigo Dorantes-Gilardi & Aurora A. Ramírez-Álvarez & Diana Terrazas-Santamaría, 2023. "Is there a differentiated gender effect of collaboration with super-cited authors? Evidence from junior researchers in economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2317-2336, April.
    4. Guo Chen & Jing Chen & Yu Shao & Lu Xiao, 2023. "Automatic noise reduction of domain-specific bibliographic datasets using positive-unlabeled learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1187-1204, February.
    5. M. Azizur Rahman & Al-Amin Hossain & Binoy Debnath & Zinnat Mahmud Zefat & Mohammad Sarwar Morshed & Ziaul Haq Adnan, 2021. "Intelligent Vehicle Scheduling and Routing for a Chain of Retail Stores: A Case Study of Dhaka, Bangladesh," Logistics, MDPI, vol. 5(3), pages 1-21, September.
    6. Gabriele Sampagnaro, 2023. "Keyword occurrences and journal specialization," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(10), pages 5629-5645, October.
    7. Feng, Hailin & Lv, Haibin & Lv, Zhihan, 2023. "Resilience towarded Digital Twins to improve the adaptability of transportation systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    8. Jiabei He & Xuchong Liu & Fan Wu & Chaoyang Chen & Xiong Li, 2022. "A mutual authentication scheme in VANET providing vehicular anonymity and tracking," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 81(2), pages 175-190, October.
    9. Qiang Shang & Yang Yu & Tian Xie, 2022. "A Hybrid Method for Traffic State Classification Using K-Medoids Clustering and Self-Tuning Spectral Clustering," Sustainability, MDPI, vol. 14(17), pages 1-20, September.
    10. Miguel F. Arevalo-Castiblanco & Jaime Pachon & Duvan Tellez-Castro & Eduardo Mojica-Nava, 2023. "Cooperative Cruise Control for Intelligent Connected Vehicles: A Bargaining Game Approach," Sustainability, MDPI, vol. 15(15), pages 1-21, August.
    11. Baccini, Federica & Barabesi, Lucio & Baccini, Alberto & Khelfaoui, Mahdi & Gingras, Yves, 2022. "Similarity network fusion for scholarly journals," Journal of Informetrics, Elsevier, vol. 16(1).
    12. Gerson Pech & Catarina Delgado & Silvio Paolo Sorella, 2022. "Classifying papers into subfields using Abstracts, Titles, Keywords and KeyWords Plus through pattern detection and optimization procedures: An application in Physics," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(11), pages 1513-1528, November.
    13. Fei Shu & Jesse David Dinneen & Shiji Chen, 2022. "Measuring the disparity among scientific disciplines using Library of Congress Subject Headings," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3613-3628, June.
    14. Michael Gusenbauer, 2022. "Search where you will find most: Comparing the disciplinary coverage of 56 bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2683-2745, May.
    15. B. Deepthi & Vikram Bansal, 2024. "Industry 4.0 in Textile and Apparel Industry: A Systematic Literature Review and Bibliometric Analysis of Global Research Trends," Vision, , vol. 28(2), pages 157-170, April.
    16. Zhou, Chang & Li, Xiang & Chen, Lujie, 2023. "Modelling the effects of metro and bike-sharing cooperation: Cost-sharing mode vs information-sharing mode," International Journal of Production Economics, Elsevier, vol. 261(C).
    17. Zhengbo Hao & Yizhe Wang & Xiaoguang Yang, 2024. "Every Second Counts: A Comprehensive Review of Route Optimization and Priority Control for Urban Emergency Vehicles," Sustainability, MDPI, vol. 16(7), pages 1-25, March.
    18. Karen Castañeda & Omar Sánchez & Rodrigo F. Herrera & Guillermo Mejía, 2022. "Highway Planning Trends: A Bibliometric Analysis," Sustainability, MDPI, vol. 14(9), pages 1-33, May.
    19. Qi, Quansong & Xu, Zhiyong & Rani, Pratibha, 2023. "Big data analytics challenges to implementing the intelligent Industrial Internet of Things (IIoT) systems in sustainable manufacturing operations," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    20. Muñoz-Écija, Teresa & Vargas-Quesada, Benjamín & Chinchilla Rodríguez, Zaida, 2019. "Coping with methods for delineating emerging fields: Nanoscience and nanotechnology as a case study," Journal of Informetrics, Elsevier, vol. 13(4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:207-:d:1307525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.