IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v129y2019icp155-169.html
   My bibliography  Save this article

Assessing the effect of autonomous driving on value of travel time savings: A comparison between current and future preferences

Author

Listed:
  • Kolarova, Viktoriya
  • Steck, Felix
  • Bahamonde-Birke, Francisco J.

Abstract

Due to digitalization trends and rapid technological development, cars are becoming more technologically advanced with an on-going trend towards fully automated vehicles. Understanding possible changes in user preferences and the impact on mobility of autonomous driving is of great importance for policy and transport planning authorities in light of urbanization trends, demographic change, and environmental challenges. Despite the relevance of the topic, there are limited empirical insights on user preferences, once autonomous driving becomes available. To close this gap and analyze the potential changes in the value of travel time savings (VTTS) resulting from the availability of autonomous driving, an online survey using revealed and stated preference methods was conducted. In the survey user preferences toward currently available and future available modes of transportation were assessed using two discrete choice experiments. VTTS calculations are based on an estimated joint mixed logit model. The results of the study show an average VTTS reduction of 41% for autonomous driving compared to driving a conventional car, however, only for commuting trips. For leisure or shopping trips, no significant changes in the VTTS were found. Considering shared autonomous vehicles (SAV), the results indicate that using SAV is perceived as a less attractive option than using a privately owned autonomous vehicle. Translating the results into policy implications, a potential conflict between individual benefits of autonomous driving and societal goals is identified. Finally, policy recommendations are discussed.

Suggested Citation

  • Kolarova, Viktoriya & Steck, Felix & Bahamonde-Birke, Francisco J., 2019. "Assessing the effect of autonomous driving on value of travel time savings: A comparison between current and future preferences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 155-169.
  • Handle: RePEc:eee:transa:v:129:y:2019:i:c:p:155-169
    DOI: 10.1016/j.tra.2019.08.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856418303859
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2019.08.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yap, Menno D. & Correia, Gonçalo & van Arem, Bart, 2016. "Preferences of travellers for using automated vehicles as last mile public transport of multimodal train trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 1-16.
    2. Correia, Gonçalo Homem de Almeida & van Arem, Bart, 2016. "Solving the User Optimum Privately Owned Automated Vehicles Assignment Problem (UO-POAVAP): A model to explore the impacts of self-driving vehicles on urban mobility," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 64-88.
    3. Abrantes, Pedro A.L. & Wardman, Mark R., 2011. "Meta-analysis of UK values of travel time: An update," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 1-17, January.
    4. Shires, J.D. & de Jong, G.C., 2009. "An international meta-analysis of values of travel time savings," Evaluation and Program Planning, Elsevier, vol. 32(4), pages 315-325, November.
    5. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    6. Fagnant, Daniel J. & Kockelman, Kara, 2015. "Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 167-181.
    7. Joan L. Walker & Moshe Ben-Akiva & Denis Bolduc, 2007. "Identification of parameters in normal error component logit-mixture (NECLM) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(6), pages 1095-1125.
    8. Hess, Stephane & Bierlaire, Michel & Polak, John W., 2005. "Estimation of value of travel-time savings using mixed logit models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 221-236.
    9. Correia, Gonçalo Homem de Almeida & Looff, Erwin & van Cranenburgh, Sander & Snelder, Maaike & van Arem, Bart, 2019. "On the impact of vehicle automation on the value of travel time while performing work and leisure activities in a car: Theoretical insights and results from a stated preference survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 359-382.
    10. Hess, Stephane & Train, Kenneth E. & Polak, John W., 2006. "On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 147-163, February.
    11. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    12. Correia, Gonçalo & Viegas, José Manuel, 2011. "Carpooling and carpool clubs: Clarifying concepts and assessing value enhancement possibilities through a Stated Preference web survey in Lisbon, Portugal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 81-90, February.
    13. David A. Hensher, 2011. "Valuation of Travel Time Savings," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 7, Edward Elgar Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hirte, Georg & Laes, Renée & Gerike, Regine, 2023. "Working from self-driving cars," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    2. Esko Lehtonen & Johanna Wörle & Fanny Malin & Barbara Metz & Satu Innamaa, 2022. "Travel experience matters: Expected personal mobility impacts after simulated L3/L4 automated driving," Transportation, Springer, vol. 49(5), pages 1295-1314, October.
    3. Filipi Nikol & Karlínová Bára & Krčál Ondřej, 2022. "The disutility of driving below the speed limit on highways," Review of Economic Perspectives, Sciendo, vol. 22(4), pages 267-277, December.
    4. Félix Carreyre & Nicolas Coulombel & Jaâfar Berrada & Laurent Bouillaut, 2022. "Economic evaluation of autonomous passenger transportation services: a systematic review and meta-analysis of simulation studies," Revue d'économie industrielle, De Boeck Université, vol. 0(2), pages 89-138.
    5. Aggelos Soteropoulos & Martin Berger & Mathias Mitteregger, 2021. "Compatibility of Automated Vehicles in Street Spaces: Considerations for a Sustainable Implementation," Sustainability, MDPI, vol. 13(5), pages 1-32, March.
    6. Hardman, Scott PhD & Chakraborty, Debapriya PhD & Kohn, Eben, 2021. "A Quantitative Investigation into the Impact of Partially Automated Vehicles on Vehicle Miles Travelled in California," Institute of Transportation Studies, Working Paper Series qt58t7674n, Institute of Transportation Studies, UC Davis.
    7. Ryosuke Abe & Yusuke Kita & Daisuke Fukuda, 2020. "An Experimental Approach to Understanding the Impacts of Monitoring Methods on Use Intentions for Autonomous Vehicle Services: Survey Evidence from Japan," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    8. Bahk, Younghun & Hyland, Michael & An, Sunghi, 2024. "Re-envisioning the Park-and-Ride concept for the automated vehicle (AV) era with Private-to-Shared AV transfer stations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    9. Liliana Andrei & Oana Luca & Florian Gaman, 2022. "Insights from User Preferences on Automated Vehicles: Influence of Socio-Demographic Factors on Value of Time in Romania Case," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    10. Hardman, Scott PhD, 2020. "Travel Behavior Changes Among Users of Partially Automated Vehicles," Institute of Transportation Studies, Working Paper Series qt8p0351m1, Institute of Transportation Studies, UC Davis.
    11. Amalia Polydoropoulou & Ioannis Tsouros & Nikolas Thomopoulos & Cristina Pronello & Arnór Elvarsson & Haraldur Sigþórsson & Nima Dadashzadeh & Kristina Stojmenova & Jaka Sodnik & Stelios Neophytou & D, 2021. "Who Is Willing to Share Their AV? Insights about Gender Differences among Seven Countries," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
    12. Lavoie, Brenden & Ong, Felita & Habib, Khandker Nurul, 2024. "Relax on the way to work or work on the way to relax? Influences of vehicle interior on travel time perceptions in autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    13. Esztergár-Kiss, Domokos & Tordai, Dániel & Lopez Lizarraga, Julio C., 2022. "Assessment of travel behavior related to e-scooters using a stated preference experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 389-405.
    14. Papaix, Claire & Eranova, Mariya & Zhou, Li, 2023. "Shared mobility research: Looking through a paradox lens," Transport Policy, Elsevier, vol. 133(C), pages 156-167.
    15. Koteshwar Chirumalla & Sara Klaff & Rania Zako & Anna Sannö, 2023. "Elevating B2B Mobility with Sharing Autonomous Electric Vehicles: Exploring Prerequisite Criteria and Innovative Business Models," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
    16. Rashidi, Taha Hossein & Waller, Travis & Axhausen, Kay, 2020. "Reduced value of time for autonomous vehicle users: Myth or reality?," Transport Policy, Elsevier, vol. 95(C), pages 30-36.
    17. Sikai Chen & Shuya Zong & Tiantian Chen & Zilin Huang & Yanshen Chen & Samuel Labi, 2023. "A Taxonomy for Autonomous Vehicles Considering Ambient Road Infrastructure," Sustainability, MDPI, vol. 15(14), pages 1-27, July.
    18. Liang, Qingnan & Li, Xin-an & Chen, Zhibin & Pan, Tianlu & Zhong, Renxin, 2023. "Day-to-day traffic control for networks mixed with regular human-piloted and connected autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    19. Hirte, Georg & Laes, Renée, 2022. "Working from self-driving cars," CEPIE Working Papers 01/22, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    20. Szimba, Eckhard & Hartmann, Martin, 2020. "Assessing travel time savings and user benefits of automated driving – A case study for a commuting relation," Transport Policy, Elsevier, vol. 98(C), pages 229-237.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Correia, Gonçalo Homem de Almeida & Looff, Erwin & van Cranenburgh, Sander & Snelder, Maaike & van Arem, Bart, 2019. "On the impact of vehicle automation on the value of travel time while performing work and leisure activities in a car: Theoretical insights and results from a stated preference survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 359-382.
    2. Schweitzer, Nicola & Hofmann, Rupert & Meinheit, Andreas, 2019. "Strategic customer foresight: From research to strategic decision-making using the example of highly automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 49-65.
    3. Schmid, Basil & Molloy, Joseph & Peer, Stefanie & Jokubauskaite, Simona & Aschauer, Florian & Hössinger, Reinhard & Gerike, Regine & Jara-Diaz, Sergio R. & Axhausen, Kay W., 2021. "The value of travel time savings and the value of leisure in Zurich: Estimation, decomposition and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 186-215.
    4. Marletto, Gerardo, 2019. "Who will drive the transition to self-driving? A socio-technical analysis of the future impact of automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 221-234.
    5. Sfeir, Georges & Abou-Zeid, Maya & Kaysi, Isam, 2020. "Multivariate count data models for adoption of new transport modes in an organization-based context," Transport Policy, Elsevier, vol. 91(C), pages 59-75.
    6. Wang, Shenhao & Zhao, Jinhua, 2019. "Risk preference and adoption of autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 215-229.
    7. Jan-Erik Swärdh & Staffan Algers, 2016. "Willingness to accept commuting time within the household: stated preference evidence," Transportation, Springer, vol. 43(2), pages 219-241, March.
    8. Small, Kenneth A., 2012. "Valuation of travel time," Economics of Transportation, Elsevier, vol. 1(1), pages 2-14.
    9. Kilkki, Kalevi & Hämmäinen, Heikki, 2019. "Value of Time in the Context of Communications Services," 30th European Regional ITS Conference, Helsinki 2019 205189, International Telecommunications Society (ITS).
    10. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    11. Bouscasse, Hélène & de Lapparent, Matthieu, 2019. "Perceived comfort and values of travel time savings in the Rhône-Alpes Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 370-387.
    12. Rich, Jeppe & Vandet, Christian Anker, 2019. "Is the value of travel time savings increasing? Analysis throughout a financial crisis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 145-168.
    13. Emberger, Guenter & Pfaffenbichler, Paul, 2020. "A quantitative analysis of potential impacts of automated vehicles in Austria using a dynamic integrated land use and transport interaction model," Transport Policy, Elsevier, vol. 98(C), pages 57-67.
    14. Hudson, John & Orviska, Marta & Hunady, Jan, 2019. "People’s attitudes to autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 164-176.
    15. Joseph F. Wyer, 2018. "Urban Transportation Mode Choice And Trip Complexity: Bicyclists Stick To Their Gears," Economic Inquiry, Western Economic Association International, vol. 56(3), pages 1777-1787, July.
    16. Faber, Koen & van Lierop, Dea, 2020. "How will older adults use automated vehicles? Assessing the role of AVs in overcoming perceived mobility barriers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 353-363.
    17. Nadafianshahamabadi, Razieh & Tayarani, Mohammad & Rowangould, Gregory, 2021. "A closer look at urban development under the emergence of autonomous vehicles: Traffic, land use and air quality impacts," Journal of Transport Geography, Elsevier, vol. 94(C).
    18. Joan L. Walker & Moshe Ben-Akiva, 2011. "Advances in Discrete Choice: Mixture Models," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 8, Edward Elgar Publishing.
    19. Weibo Li & Maria Kamargianni, 2020. "An Integrated Choice and Latent Variable Model to Explore the Influence of Attitudinal and Perceptual Factors on Shared Mobility Choices and Their Value of Time Estimation," Transportation Science, INFORMS, vol. 54(1), pages 62-83, January.
    20. Wadud, Zia & Mattioli, Giulio, 2021. "Fully automated vehicles: A cost-based analysis of the share of ownership and mobility services, and its socio-economic determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 228-244.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:129:y:2019:i:c:p:155-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.