IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10562-d896600.html
   My bibliography  Save this article

A Tripartite Evolutionary Game and Simulation Analysis of Transportation Carbon Emission Reduction across Regions under Government Reward and Punishment Mechanism

Author

Listed:
  • Yunlong Liu

    (School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China)

  • Leiyu Chen

    (School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China)

  • Chengfeng Huang

    (School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China)

Abstract

Pollution and carbon reduction is a key strategic direction for ecological civilization in China, and a hot issue of concern for the government and the whole society. The main goal of this paper was to consider the regional externalities of traffic emissions and clarify the relationship between provincial and central government strategies under the government reward and punishment mechanism. This paper considers the unevenness of regional transportation emissions, constructs a three-party evolutionary game model among transportation carbon deficit provinces, transportation carbon surplus provinces, and the central government, discusses the evolutionary stability of the game under different strategies of the three parties, and analyzes the influence of each element on the game structure. The study shows that: Environmental losses can increase the evolutionary speed of active emission reduction in transportation carbon deficit provinces, and the probability of supporting cross-regional carbon emission reduction in transportation carbon surplus provinces decreases slightly with the increase and the probability of central government regulation increases. The central government has a certain binding effect on transportation carbon deficit provinces and carbon surplus provinces through fines, and cross-zone cooperation subsidies are conducive to promoting carbon deficit provinces to actively reduce emissions. The cross-region compensation of carbon deficit provinces can promote the governments of carbon surplus provinces to support cross-region carbon emission abatement, and the cost of regulation will reduce the probability of central government regulation. Finally, Matlab simulation is used to verify the conclusions and provide countermeasures and suggestions for cross-regional abatement of regional transportation emissions by the central government.

Suggested Citation

  • Yunlong Liu & Leiyu Chen & Chengfeng Huang, 2022. "A Tripartite Evolutionary Game and Simulation Analysis of Transportation Carbon Emission Reduction across Regions under Government Reward and Punishment Mechanism," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10562-:d:896600
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10562/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10562/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Du, Mengbing & Zhang, Xiaoling & Xia, Lang & Cao, Libin & Zhang, Zhe & Zhang, Li & Zheng, Heran & Cai, Bofeng, 2022. "The China Carbon Watch (CCW) system: A rapid accounting of household carbon emissions in China at the provincial level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    2. Yu, Yang & Li, Shuangqi & Sun, Huaping & Taghizadeh-Hesary, Farhad, 2021. "Energy carbon emission reduction of China’s transportation sector: An input–output approach," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 378-393.
    3. Zhuo, Chengfeng & Xie, Yuping & Mao, Yanhua & Chen, Pengqin & Li, Yiqiao, 2022. "Can cross-regional environmental protection promote urban green development: Zero-sum game or win-win choice?," Energy Economics, Elsevier, vol. 106(C).
    4. Xu, Bin & Lin, Boqiang, 2016. "Differences in regional emissions in China's transport sector: Determinants and reduction strategies," Energy, Elsevier, vol. 95(C), pages 459-470.
    5. Tamannaei, Mohammad & Zarei, Hamid & Rasti-Barzoki, Morteza, 2021. "A game theoretic approach to sustainable freight transportation: Competition between road and intermodal road–rail systems with government intervention," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 272-295.
    6. Zhao, Pengjun & Zeng, Liangen & Li, Peilin & Lu, Haiyan & Hu, Haoyu & Li, Chengming & Zheng, Mengyuan & Li, Haitao & Yu, Zhao & Yuan, Dandan & Xie, Jinxin & Huang, Qi & Qi, Yuting, 2022. "China's transportation sector carbon dioxide emissions efficiency and its influencing factors based on the EBM DEA model with undesirable outputs and spatial Durbin model," Energy, Elsevier, vol. 238(PC).
    7. Lindsey, Robin & Santos, Georgina, 2020. "Addressing transportation and environmental externalities with economics: Are policy makers listening?," Research in Transportation Economics, Elsevier, vol. 82(C).
    8. Santarromana, Rudolph & Mendonça, Joana & Dias, André Martins, 2020. "The effectiveness of decarbonizing the passenger transport sector through monetary incentives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 442-462.
    9. Zhang, Linling & Long, Ruyin & Li, Wenbo & Wei, Jia, 2020. "Potential for reducing carbon emissions from urban traffic based on the carbon emission satisfaction: Case study in Shanghai," Journal of Transport Geography, Elsevier, vol. 85(C).
    10. Yang, Yi & Yuan, Zhuqing & Yang, Shengnan, 2022. "Difference in the drivers of industrial carbon emission costs determines the diverse policies in middle-income regions: A case of northwestern China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    11. Kellner, Florian, 2016. "Allocating greenhouse gas emissions to shipments in road freight transportation: Suggestions for a global carbon accounting standard," Energy Policy, Elsevier, vol. 98(C), pages 565-575.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinshang You & Shuo Zhao & Yanbo Yang & Dongli Zhang, 2022. "Influence of the Government Department on the Production Capacity Reserve of Emergency Enterprises Based on Multi-Scenario Evolutionary Game," Sustainability, MDPI, vol. 14(23), pages 1-35, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunlong Liu & Leiyu Chen & Chengfeng Huang, 2022. "Study on the Carbon Emission Spillover Effects of Transportation under Technological Advancements," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
    2. Liu, Hongwei & Shao, Liangyu & Min, Jie & Ji, Xiang, 2024. "Regional differences and determinants of environmental efficiency in China's road transportation industry," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 931-946.
    3. Gkoumas, Konstantinos & van Balen, Mitchell & Tsakalidis, Anastasios & Pekar, Ferenc, 2022. "Evaluating the development of transport technologies in European research and innovation projects between 2007 and 2020," Research in Transportation Economics, Elsevier, vol. 92(C).
    4. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    5. Tscharaktschiew, Stefan & Reimann, Felix, 2021. "On employer-paid parking and parking (cash-out) policy: A formal synthesis of different perspectives," Transport Policy, Elsevier, vol. 110(C), pages 499-516.
    6. Wang, Xianzhu & Huang, He & Hong, Jingke & Ni, Danfei & He, Rongxiao, 2020. "A spatiotemporal investigation of energy-driven factors in China: A region-based structural decomposition analysis," Energy, Elsevier, vol. 207(C).
    7. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    8. Zhen Wang & Xupeng Zhang & Chaozheng Zhang & Qing Yang, 2022. "How Regional Integration Affects Urban Green Development Efficiency: Evidence from Urban Agglomeration in the Middle Reaches of the Yangtze River," IJERPH, MDPI, vol. 19(13), pages 1-16, June.
    9. Zhenhua Xu & Fuyi Ci, 2023. "Spatial-Temporal Characteristics and Driving Factors of Coupling Coordination between the Digital Economy and Low-Carbon Development in the Yellow River Basin," Sustainability, MDPI, vol. 15(3), pages 1-23, February.
    10. Gao, Zhiyuan & Zhang, Yahui & Li, Lianqing & Hao, Yu, 2024. "Will resource tax reform raise green total factor productivity levels in cities? Evidence from 114 resource-based cities in China," Resources Policy, Elsevier, vol. 88(C).
    11. Yuanying Chi & Wenbing Zhou & Songlin Tang & Yu Hu, 2022. "Driving Factors of CO 2 Emissions in China’s Power Industry: Relative Importance Analysis Based on Spatial Durbin Model," Energies, MDPI, vol. 15(7), pages 1-15, April.
    12. Salman, Muhammad & Long, Xingle & Wang, Guimei & Zha, Donglan, 2022. "Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design," Energy Policy, Elsevier, vol. 168(C).
    13. Min Wang & Yang Wang & Yingmei Wu & Xiaoli Yue & Mengjiao Wang & Pingping Hu, 2022. "Detecting Differences in the Impact of Construction Land Types on Carbon Emissions: A Case Study of Southwest China," Land, MDPI, vol. 11(5), pages 1-16, May.
    14. Abada, I. & Ehrenmann, A. & Lambin, X., 2017. "On the viability of energy communities," Cambridge Working Papers in Economics 1740, Faculty of Economics, University of Cambridge.
    15. Hongtao Jiang & Jian Yin & Yuanhong Qiu & Bin Zhang & Yi Ding & Ruici Xia, 2022. "Industrial Carbon Emission Efficiency of Cities in the Pearl River Basin: Spatiotemporal Dynamics and Driving Forces," Land, MDPI, vol. 11(8), pages 1-22, July.
    16. Wu, Tian & Shen, Qu & Xu, Ming & Peng, Tianduo & Ou, Xunmin, 2018. "Development and application of an energy use and CO2 emissions reduction evaluation model for China's online car hailing services," Energy, Elsevier, vol. 154(C), pages 298-307.
    17. Xiaoxuan Wei & Meng Ye & Liang Yuan & Wei Bi & Weisheng Lu, 2022. "Analyzing the Freight Characteristics and Carbon Emission of Construction Waste Hauling Trucks: Big Data Analytics of Hong Kong," IJERPH, MDPI, vol. 19(4), pages 1-21, February.
    18. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    19. Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).
    20. Ibrahim Abada & Andreas Ehrenmann & Xavier Lambin, 2020. "On the Viability of Energy Communities," The Energy Journal, , vol. 41(1), pages 113-150, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10562-:d:896600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.