IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v155y2022ics1364032121012077.html
   My bibliography  Save this article

Difference in the drivers of industrial carbon emission costs determines the diverse policies in middle-income regions: A case of northwestern China

Author

Listed:
  • Yang, Yi
  • Yuan, Zhuqing
  • Yang, Shengnan

Abstract

Carbon reduction actions may cause regions that recently entered the middle-income threshold to fall into “ecological poverty”. Identifying the factors driving industrial carbon emission costs (ICECs) growth is difficult and important for achieving “peak carbon dioxide emissions” and “carbon neutrality” goals. This study considers the northwestern provinces (NWPs) of China as a case, innovatively adopts the ecological service value (ESV) to convert the physical cost of industrial carbon emissions (PCICE) to the cost value of industrial carbon emissions (CVICE). The logarithmic mean Divisia index decomposition method is employed to analyze the impacts of the carbon emission coefficient, energy intensity, industrial structure, population size and economic factors on ICECs. Consequently, PCICE and CVICE in NWPs are increased, and CVICE is faster. The energy intensity and population size factors inhibit the increase in CVICE, and the energy intensity factor effect is stronger, the average contribution rate is in [-14.63%, −111.91%]. The carbon emission coefficient factor has a significant positive effect on CVICE, the average contribution rate is in [75.91%, 409.72%]. The economic and industrial structure factors have different effects on the direction and average contribution rate of CVICE in different provinces, the economic factor effect is obvious. The results show that the factors driving ICECs changes in middle-income regions are different. This study provides a novel theoretical framework and ideas for formulating diversified carbon emission reduction policies. It has important practical significance for different middle-income regions worldwide to formulate carbon emission reduction policies based on actual industrial economic development.

Suggested Citation

  • Yang, Yi & Yuan, Zhuqing & Yang, Shengnan, 2022. "Difference in the drivers of industrial carbon emission costs determines the diverse policies in middle-income regions: A case of northwestern China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:rensus:v:155:y:2022:i:c:s1364032121012077
    DOI: 10.1016/j.rser.2021.111942
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121012077
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111942?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Yi & Jia, Yuwei & Ling, Sun & Yao, Congxu, 2021. "Urban natural resource accounting based on the system of environmental economic accounting in Northwest China: A case study of Xi’an," Ecosystem Services, Elsevier, vol. 47(C).
    2. Dorband, Ira Irina & Jakob, Michael & Kalkuhl, Matthias & Steckel, Jan Christoph, 2019. "Poverty and distributional effects of carbon pricing in low- and middle-income countries – A global comparative analysis," World Development, Elsevier, vol. 115(C), pages 246-257.
    3. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    4. Chong, Chin Hao & Tan, Wei Xin & Ting, Zhao Jia & Liu, Pei & Ma, Linwei & Li, Zheng & Ni, Weidou, 2019. "The driving factors of energy-related CO2 emission growth in Malaysia: The LMDI decomposition method based on energy allocation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Namahoro, J.P. & Wu, Q. & Zhou, N. & Xue, S., 2021. "Impact of energy intensity, renewable energy, and economic growth on CO2 emissions: Evidence from Africa across regions and income levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    6. Pavol Durana & Lucia Michalkova & Andrej Privara & Josef Marousek & Milos Tumpach, 2021. "Does the life cycle affect earnings management and bankruptcy?," Oeconomia Copernicana, Institute of Economic Research, vol. 12(2), pages 425-461, June.
    7. Xu, Bin & Chen, Jianbao, 2021. "How to achieve a low-carbon transition in the heavy industry? A nonlinear perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    8. Wang, Changjian & Wang, Fei & Zhang, Xinlin & Yang, Yu & Su, Yongxian & Ye, Yuyao & Zhang, Hongou, 2017. "Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 51-61.
    9. Wu, Rong & Wang, Jieyu & Wang, Shaojian & Feng, Kuishuang, 2021. "The drivers of declining CO2 emissions trends in developed nations using an extended STIRPAT model: A historical and prospective analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    11. Xu, Jin-Hua & Fleiter, Tobias & Eichhammer, Wolfgang & Fan, Ying, 2012. "Energy consumption and CO2 emissions in China's cement industry: A perspective from LMDI decomposition analysis," Energy Policy, Elsevier, vol. 50(C), pages 821-832.
    12. Azam, Muhammad & Khan, Abdul Qayyum, 2016. "Testing the Environmental Kuznets Curve hypothesis: A comparative empirical study for low, lower middle, upper middle and high income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 556-567.
    13. Shimoda, Yoshiyuki & Yamaguchi, Yohei & Iwafune, Yumiko & Hidaka, Kazuyoshi & Meier, Alan & Yagita, Yoshie & Kawamoto, Hisaki & Nishikiori, Soichi, 2020. "Energy demand science for a decarbonized society in the context of the residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    14. Pang, Jun & Timilsina, Govinda, 2021. "How would an emissions trading scheme affect provincial economies in China: Insights from a computable general equilibrium model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Chen, Lei & Xu, Linyu & Yang, Zhifeng, 2019. "Inequality of industrial carbon emissions of the urban agglomeration and its peripheral cities: A case in the Pearl River Delta, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 438-447.
    16. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    17. Štreimikienė, Dalia & Balezentis, Tomas, 2016. "Kaya identity for analysis of the main drivers of GHG emissions and feasibility to implement EU “20–20–20” targets in the Baltic States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1108-1113.
    18. Zhang, Yue-Jun & Liang, Ting & Jin, Yan-Lin & Shen, Bo, 2020. "The impact of carbon trading on economic output and carbon emissions reduction in China’s industrial sectors," Applied Energy, Elsevier, vol. 260(C).
    19. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Bejarano, María D. & Garrote, Luis, 2021. "Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    20. Armeanu, Daniel Stefan & Joldes, Camelia Catalina & Gherghina, Stefan Cristian & Andrei, Jean Vasile, 2021. "Understanding the multidimensional linkages among renewable energy, pollution, economic growth and urbanization in contemporary economies: Quantitative assessments across different income countries’ g," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng Yang & Yisheng Liu & Jinzhao Tian & Feiyu Cheng & Pengbo Song, 2022. "Dynamic Evolution and Regional Disparity in Carbon Emission Intensity in China," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    2. Salman, Muhammad & Long, Xingle & Wang, Guimei & Zha, Donglan, 2022. "Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design," Energy Policy, Elsevier, vol. 168(C).
    3. Min Wang & Yang Wang & Yingmei Wu & Xiaoli Yue & Mengjiao Wang & Pingping Hu, 2022. "Detecting Differences in the Impact of Construction Land Types on Carbon Emissions: A Case Study of Southwest China," Land, MDPI, vol. 11(5), pages 1-16, May.
    4. Binbin Yang & Sang-Do Park, 2023. "Who Drives Carbon Neutrality in China? Text Mining and Network Analysis," Sustainability, MDPI, vol. 15(6), pages 1-24, March.
    5. Ghulam Ghouse & Aribah Aslam & Muhammad Ishaq Bhatti, 2022. "The Impact of the Environment, Digital–Social Inclusion, and Institutions on Inclusive Growth: A Conceptual and Empirical Analysis," Energies, MDPI, vol. 15(19), pages 1-19, September.
    6. Yunlong Liu & Leiyu Chen & Chengfeng Huang, 2022. "A Tripartite Evolutionary Game and Simulation Analysis of Transportation Carbon Emission Reduction across Regions under Government Reward and Punishment Mechanism," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    7. Ting Zhang & Longqian Chen & Ziqi Yu & Jinyu Zang & Long Li, 2022. "Spatiotemporal Evolution Characteristics of Carbon Emissions from Industrial Land in Anhui Province, China," Land, MDPI, vol. 11(11), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingyuan Li & Jinhua Cheng & Beidi Diao & Yaqi Wu & Peiqi Hu & Shurui Jiang, 2021. "Social and Economic Factors of Industrial Carbon Dioxide in China: From the Perspective of Spatiotemporal Transition," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    2. Jialing Zou & Zhipeng Tang & Shuang Wu, 2019. "Divergent Leading Factors in Energy-Related CO 2 Emissions Change among Subregions of the Beijing–Tianjin–Hebei Area from 2006 to 2016: An Extended LMDI Analysis," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    3. Wen, Hong-xing & Chen, Zhe & Yang, Qian & Liu, Jin-yi & Nie, Pu-yan, 2022. "Driving forces and mitigating strategies of CO2 emissions in China: A decomposition analysis based on 38 industrial sub-sectors," Energy, Elsevier, vol. 245(C).
    4. Li, Hao & Zhao, Yuhuan & Qiao, Xiaoyong & Liu, Ya & Cao, Ye & Li, Yue & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Weng, Jianfeng, 2017. "Identifying the driving forces of national and regional CO2 emissions in China: Based on temporal and spatial decomposition analysis models," Energy Economics, Elsevier, vol. 68(C), pages 522-538.
    5. Jie-fang Dong & Qiang Wang & Chun Deng & Xing-min Wang & Xiao-lei Zhang, 2016. "How to Move China toward a Green-Energy Economy: From a Sector Perspective," Sustainability, MDPI, vol. 8(4), pages 1-18, April.
    6. Fei Wang & Changjian Wang & Yongxian Su & Lixia Jin & Yang Wang & Xinlin Zhang, 2017. "Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    7. Yang Yu & Qiuyue Kong, 2017. "Analysis on the influencing factors of carbon emissions from energy consumption in China based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1691-1707, September.
    8. Yunlong Zhao & Geng Kong & Chin Hao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "How to Effectively Control Energy Consumption Growth in China’s 29 Provinces: A Paradigm of Multi-Regional Analysis Based on EAALMDI Method," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    9. Xu, Renjing & Xu, Bin, 2022. "Exploring the effective way of reducing carbon intensity in the heavy industry using a semiparametric econometric approach," Energy, Elsevier, vol. 243(C).
    10. Gen Li & Shihong Zeng & Tengfei Li & Qiao Peng & Muhammad Irfan, 2023. "Analysing the Effect of Energy Intensity on Carbon Emission Reduction in Beijing," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    11. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    12. Yang, Jing & Song, Kaihui & Hou, Jian & Zhang, Peidong & Wu, Jinhu, 2017. "Temporal and spacial dynamics of bioenergy-related CO2 emissions and underlying forces analysis in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1323-1330.
    13. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    14. Lili Sun & Huijuan Cui & Quansheng Ge, 2021. "Driving Factors and Future Prediction of Carbon Emissions in the ‘Belt and Road Initiative’ Countries," Energies, MDPI, vol. 14(17), pages 1-21, September.
    15. Hongli Zhang & Lei Shen & Shuai Zhong & Ayman Elshkaki, 2020. "Economic Structure Transformation and Low-Carbon Development in Energy-Rich Cities: The Case of the Contiguous Area of Shanxi and Shaanxi Provinces, and Inner Mongolia Autonomous Region of China," Sustainability, MDPI, vol. 12(5), pages 1-14, March.
    16. Alajmi, Reema Gh, 2021. "Factors that impact greenhouse gas emissions in Saudi Arabia: Decomposition analysis using LMDI," Energy Policy, Elsevier, vol. 156(C).
    17. Shigetomi, Yosuke & Matsumoto, Ken'ichi & Ogawa, Yuki & Shiraki, Hiroto & Yamamoto, Yuki & Ochi, Yuki & Ehara, Tomoki, 2018. "Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan," Applied Energy, Elsevier, vol. 228(C), pages 2321-2332.
    18. Wang, Yueying & Liu, Qinming, 2024. "Examining factors driving household carbon emissions from elderly families—Evidence from Japan," Finance Research Letters, Elsevier, vol. 65(C).
    19. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    20. Jin, Gui & Shi, Xin & Zhang, Lei & Hu, Shougeng, 2020. "Measuring the SCCs of different Chinese regions under future scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:155:y:2022:i:c:s1364032121012077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.