IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10467-d895120.html
   My bibliography  Save this article

Comparative Analysis of the Optimized KNN, SVM, and Ensemble DT Models Using Bayesian Optimization for Predicting Pedestrian Fatalities: An Advance towards Realizing the Sustainable Safety of Pedestrians

Author

Listed:
  • Lei Yang

    (Department of Computer Science and Technology, Lyuliang University, Lvliang 033000, China)

  • Mahdi Aghaabbasi

    (Transportation Institute, Chulalongkorn University, Bangkok 10330, Thailand)

  • Mujahid Ali

    (Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia)

  • Amin Jan

    (Faculty of Hospitality, Tourism and Wellness, Universiti Malaysia Kelantan, City Campus, Kota Bharu 16100, Malaysia)

  • Belgacem Bouallegue

    (College of Computer Science, King Khalid University, Abha 62529, Saudi Arabia
    Electronics and Micro-Electronics Laboratory (E. μ. E. L.), Faculty of Sciences of Monastir, University of Monastir, Monastir 09023, Tunisia)

  • Muhammad Faisal Javed

    (Department of Civil Engineering, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan)

  • Nermin M. Salem

    (Electrical Engineering, Faculty of Engineering and Technology, Future University in Egypt, New Cario 11835, Egypt)

Abstract

Over the past three decades, more than 8000 pedestrians have been killed in Australia due to vehicular crashes. There is a general assumption that pedestrians are often the most vulnerable to crashes. Sustainable transportation goals are at odds with the high risk of pedestrian fatalities and injuries in car crashes. It is imperative that the reasons for pedestrian injuries be identified if we are to improve the safety of this group of road users who are particularly susceptible. These results were obtained mostly through the use of well-established statistical approaches. A lack of flexibility in managing outliers, incomplete, or inconsistent data, as well as rigid pre-assumptions, have been criticized in these models. This study employed three well-known machine learning models to predict road-crash-related pedestrian fatalities (RCPF). These models included support vector machines (SVM), ensemble decision trees (EDT), and k-nearest neighbors (KNN). These models were hybridized with a Bayesian optimization (BO) algorithm to find the optimum values of their hyperparameters, which are extremely important to accurately predict the RCPF. The findings of this study show that all the three models’ performance was improved using the BO. The KNN model had the highest improvement in accuracy (+11%) after the BO was applied to it. However, the ultimate accuracy of the SVM and EDT models was higher than that of the KNN model. This study establishes the framework for employing optimized machine learning techniques to reduce pedestrian fatalities in traffic accidents.

Suggested Citation

  • Lei Yang & Mahdi Aghaabbasi & Mujahid Ali & Amin Jan & Belgacem Bouallegue & Muhammad Faisal Javed & Nermin M. Salem, 2022. "Comparative Analysis of the Optimized KNN, SVM, and Ensemble DT Models Using Bayesian Optimization for Predicting Pedestrian Fatalities: An Advance towards Realizing the Sustainable Safety of Pedestri," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10467-:d:895120
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10467/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10467/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ho-Chul Park & Yang-Jun Joo & Seung-Young Kho & Dong-Kyu Kim & Byung-Jung Park, 2019. "Injury Severity of Bus–Pedestrian Crashes in South Korea Considering the Effects of Regional and Company Factors," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    2. Manze Guo & Zhenzhou Yuan & Bruce Janson & Yongxin Peng & Yang Yang & Wencheng Wang, 2021. "Older Pedestrian Traffic Crashes Severity Analysis Based on an Emerging Machine Learning XGBoost," Sustainability, MDPI, vol. 13(2), pages 1-26, January.
    3. Zhu-Ping Zhou & Ying-Shun Liu & Wei Wang & Yong Zhang, 2013. "Multinomial Logit Model of Pedestrian Crossing Behaviors at Signalized Intersections," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-8, December.
    4. Wei Xie & Wen Nie & Pooya Saffari & Luis F. Robledo & Pierre-Yves Descote & Wenbin Jian, 2021. "Landslide hazard assessment based on Bayesian optimization–support vector machine in Nanping City, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 931-948, October.
    5. Wenlong Tao & Mahdi Aghaabbasi & Mujahid Ali & Abdulrazak H. Almaliki & Rosilawati Zainol & Abdulrhman A. Almaliki & Enas E. Hussein, 2022. "An Advanced Machine Learning Approach to Predicting Pedestrian Fatality Caused by Road Crashes: A Step toward Sustainable Pedestrian Safety," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    6. Aghaabbasi, Mahdi & Shekari, Zohreh Asadi & Shah, Muhammad Zaly & Olakunle, Oloruntobi & Armaghani, Danial Jahed & Moeinaddini, Mehdi, 2020. "Predicting the use frequency of ride-sourcing by off-campus university students through random forest and Bayesian network techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 262-281.
    7. Shakil Rifaat & Richard Tay & Alexandre de Barros, 2012. "Urban Street Pattern and Pedestrian Traffic Safety," Journal of Urban Design, Taylor & Francis Journals, vol. 17(3), pages 337-352.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lili Zheng & Yanlin Zhang & Tongqiang Ding & Fanyun Meng & Yanlin Li & Shiyu Cao, 2022. "Classification of Driver Distraction Risk Levels: Based on Driver’s Gaze and Secondary Driving Tasks," Mathematics, MDPI, vol. 10(24), pages 1-23, December.
    2. Quan Yuan & Xianguo Zhai & Wei Ji & Tiantong Yang & Yang Yu & Shengnan Yu, 2022. "Correlation Analysis on Accident Injury and Risky Behavior of Vulnerable Road Users Based on Bayesian General Ordinal Logit Model," Sustainability, MDPI, vol. 14(23), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenlong Tao & Mahdi Aghaabbasi & Mujahid Ali & Abdulrazak H. Almaliki & Rosilawati Zainol & Abdulrhman A. Almaliki & Enas E. Hussein, 2022. "An Advanced Machine Learning Approach to Predicting Pedestrian Fatality Caused by Road Crashes: A Step toward Sustainable Pedestrian Safety," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    2. Panyu Tang & Mahdi Aghaabbasi & Mujahid Ali & Amin Jan & Abdeliazim Mustafa Mohamed & Abdullah Mohamed, 2022. "How Sustainable Is People’s Travel to Reach Public Transit Stations to Go to Work? A Machine Learning Approach to Reveal Complex Relationships," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    3. Xiangning Dong & Xuhao Zhu & Minghua Hu & Jie Bao, 2023. "A Methodology for Predicting Ground Delay Program Incidence through Machine Learning," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    4. Gustavo García-Melero & Rubén Sainz-González & Pablo Coto-Millán & Alejandra Valencia-Vásquez, 2021. "Sustainable Mobility Policy Analysis Using Hybrid Choice Models: Is It the Right Choice?," Sustainability, MDPI, vol. 13(5), pages 1-16, March.
    5. Zohreh Asadi-Shekari & Ismaïl Saadi & Mario Cools, 2022. "Applying Machine Learning to Explore Feelings about Sharing the Road with Autonomous Vehicles as a Bicyclist or as a Pedestrian," Sustainability, MDPI, vol. 14(3), pages 1-10, February.
    6. Te Ma & Mahdi Aghaabbasi & Mujahid Ali & Rosilawati Zainol & Amin Jan & Abdeliazim Mustafa Mohamed & Abdullah Mohamed, 2022. "Nonlinear Relationships between Vehicle Ownership and Household Travel Characteristics and Built Environment Attributes in the US Using the XGBT Algorithm," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    7. Shengxue Zhu & Ke Wang & Chongyi Li, 2021. "Crash Injury Severity Prediction Using an Ordinal Classification Machine Learning Approach," IJERPH, MDPI, vol. 18(21), pages 1-20, November.
    8. Yang, Yang & He, Kun & Wang, Yun-peng & Yuan, Zhen-zhou & Yin, Yong-hao & Guo, Man-ze, 2022. "Identification of dynamic traffic crash risk for cross-area freeways based on statistical and machine learning methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    9. Asep Yayat Nurhidayat & Hera Widyastuti & Sutikno & Dwi Phalita Upahita, 2023. "Research on Passengers’ Preferences and Impact of High-Speed Rail on Air Transport Demand," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    10. Zhiqiang Xu & Mahdi Aghaabbasi & Mujahid Ali & Elżbieta Macioszek, 2022. "Targeting Sustainable Transportation Development: The Support Vector Machine and the Bayesian Optimization Algorithm for Classifying Household Vehicle Ownership," Sustainability, MDPI, vol. 14(17), pages 1-17, September.
    11. Zhang, Yuanyuan & Bigham, John & Ragland, David & Chen, Xiaohong, 2015. "Investigating the associations between road network structure and non-motorist accidents," Journal of Transport Geography, Elsevier, vol. 42(C), pages 34-47.
    12. Chuhan Wang & Qigen Lin & Leibin Wang & Tong Jiang & Buda Su & Yanjun Wang & Sanjit Kumar Mondal & Jinlong Huang & Ying Wang, 2022. "The influences of the spatial extent selection for non-landslide samples on statistical-based landslide susceptibility modelling: a case study of Anhui Province in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1967-1988, July.
    13. Lining Liu & Xiaofei Ye & Tao Wang & Xingchen Yan & Jun Chen & Bin Ran, 2022. "Key Factors Analysis of Severity of Automobile to Two-Wheeler Traffic Accidents Based on Bayesian Network," IJERPH, MDPI, vol. 19(10), pages 1-17, May.
    14. Deborah Simon Mwakapesa & Yimin Mao & Xiaoji Lan & Yaser Ahangari Nanehkaran, 2023. "Landslide Susceptibility Mapping Using DIvisive ANAlysis (DIANA) and RObust Clustering Using linKs (ROCK) Algorithms, and Comparison of Their Performance," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    15. Zhang, Xiaojian & Zhao, Xilei, 2022. "Machine learning approach for spatial modeling of ridesourcing demand," Journal of Transport Geography, Elsevier, vol. 100(C).
    16. Lu, Jing & Meng, Yucan & Timmermans, Harry & Zhang, Anming, 2021. "Modeling hesitancy in airport choice: A comparison of discrete choice and machine learning methods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 230-250.
    17. HUO, Zhengqi & YANG, Xiaobao & LIU, Xiaobing & YAN, Xuedong, 2024. "Spatio-temporal analysis on online designated driving based on empirical data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    18. Hazem Ghassan Abdo & Hussein Almohamad & Ahmed Abdullah Al Dughairi & Motirh Al-Mutiry, 2022. "GIS-Based Frequency Ratio and Analytic Hierarchy Process for Forest Fire Susceptibility Mapping in the Western Region of Syria," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    19. Xiaojie Geng & Shunchuan Wu & Yanjie Zhang & Junlong Sun & Haiyong Cheng & Zhongxin Zhang & Shijiang Pu, 2023. "Developing hybrid XGBoost model integrated with entropy weight and Bayesian optimization for predicting tunnel squeezing intensity," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 751-771, October.
    20. Choi, Dong-ah & Ewing, Reid, 2021. "Effect of street network design on traffic congestion and traffic safety," Journal of Transport Geography, Elsevier, vol. 96(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10467-:d:895120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.