IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v119y2023i1d10.1007_s11069-023-06137-0.html
   My bibliography  Save this article

Developing hybrid XGBoost model integrated with entropy weight and Bayesian optimization for predicting tunnel squeezing intensity

Author

Listed:
  • Xiaojie Geng

    (Kunming University of Science and Technology
    Ministry of Natural Resources of the People’s Republic of China)

  • Shunchuan Wu

    (Kunming University of Science and Technology
    Ministry of Natural Resources of the People’s Republic of China
    University of Science and Technology Beijing)

  • Yanjie Zhang

    (Yunnan Dianzhong Water Diversion Engineering Co., Ltd.)

  • Junlong Sun

    (Kunming University of Science and Technology)

  • Haiyong Cheng

    (Kunming University of Science and Technology
    Ministry of Natural Resources of the People’s Republic of China)

  • Zhongxin Zhang

    (Kunming University of Science and Technology)

  • Shijiang Pu

    (Kunming University of Science and Technology)

Abstract

Tunnel squeezing, a significant deformation issue intimately tied to creep, poses a substantial threat to the safety and efficiency of tunnel construction. In this study, we employ a combination of the Bayesian Optimization (BO) algorithm and the Entropy Weight Method (EWM) to enhance the Extreme Gradient Boosting (XGBoost) model. This optimized model aims to predict tunnel squeezing intensity accurately, utilizing a dataset derived from 139 tunnel case histories. To extract the information encapsulated in the prediction indices, the EWM is initially used to pre-process the sample data, mitigating the impact of large differences in the input parameters’ values across various dimensions. Concurrently, the BO algorithm is applied to optimize the crucial hyperparameters of the XGBoost model, thereby effectively enhancing its performance. As part of this study, the Strength–Stress Ratio (SSR), Rock Mass Quality Index in the BQ system ([BQ]), Tunnel Diameter (D), and Support Stiffness (K) are selected as inputs for the tunnel squeezing estimation model. Within the study’s context, the prediction accuracy (Acc) and kappa coefficient (k) of the EWM-BO-XGBoost, XGBoost, BO-XGBoost, Evidence Theory (ET), Random Forest (RF), Support Vector Machine (SVM), and Decision Tree (DT) models are computed and compared. The results demonstrate that the Acc (91.7%) and k (0.89) of the EWM-BO-XGBoost model are the highest, attesting to its reliability and superiority over other alternatives. Furthermore, the analysis of the prediction indices’ feature importance reveals that the SSR contributes the most to the squeezing intensity, followed by the D and [BQ], while the K has the least effect on the squeezing intensity. This study can serve as a reference for predicting tunnel squeezing deformation and provide a research foundation for intelligent tunneling operations.

Suggested Citation

  • Xiaojie Geng & Shunchuan Wu & Yanjie Zhang & Junlong Sun & Haiyong Cheng & Zhongxin Zhang & Shijiang Pu, 2023. "Developing hybrid XGBoost model integrated with entropy weight and Bayesian optimization for predicting tunnel squeezing intensity," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 751-771, October.
  • Handle: RePEc:spr:nathaz:v:119:y:2023:i:1:d:10.1007_s11069-023-06137-0
    DOI: 10.1007/s11069-023-06137-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06137-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06137-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saeedeh Eskandari & Mahdis Amiri & Nitheshnirmal Sãdhasivam & Hamid Reza Pourghasemi, 2020. "Comparison of new individual and hybrid machine learning algorithms for modeling and mapping fire hazard: a supplementary analysis of fire hazard in different counties of Golestan Province in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 305-327, October.
    2. Reza Mikaeil & Sina Shaffiee Haghshenas & Zoheir Sedaghati, 2019. "Geotechnical risk evaluation of tunneling projects using optimization techniques (case study: the second part of Emamzade Hashem tunnel)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1099-1113, July.
    3. Wei Xie & Wen Nie & Pooya Saffari & Luis F. Robledo & Pierre-Yves Descote & Wenbin Jian, 2021. "Landslide hazard assessment based on Bayesian optimization–support vector machine in Nanping City, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 931-948, October.
    4. Zoubin Ghahramani, 2015. "Probabilistic machine learning and artificial intelligence," Nature, Nature, vol. 521(7553), pages 452-459, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "State Space Approach to Adaptive Artificial Intelligence Modeling: Application to Financial Portfolio with Fuzzy System," CARF F-Series CARF-F-422, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    2. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Qiqin Zhou, 2024. "Explainable AI in Request-for-Quote," Papers 2407.15038, arXiv.org.
    4. Manis, K.T. & Madhavaram, Sreedhar, 2023. "AI-Enabled marketing capabilities and the hierarchy of capabilities: Conceptualization, proposition development, and research avenues," Journal of Business Research, Elsevier, vol. 157(C).
    5. Sina Shaffiee Haghshenas & Behrouz Pirouz & Sami Shaffiee Haghshenas & Behzad Pirouz & Patrizia Piro & Kyoung-Sae Na & Seo-Eun Cho & Zong Woo Geem, 2020. "Prioritizing and Analyzing the Role of Climate and Urban Parameters in the Confirmed Cases of COVID-19 Based on Artificial Intelligence Applications," IJERPH, MDPI, vol. 17(10), pages 1-21, May.
    6. Efrat Taig & Ohad Ben-Shahar, 2019. "Gradient Surfing: A New Deterministic Approach for Low-Dimensional Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 855-878, March.
    7. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    8. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2017. "State Space Approach to Adaptive Fuzzy Modeling: Application to Financial Investment," CIRJE F-Series CIRJE-F-1067, CIRJE, Faculty of Economics, University of Tokyo.
    9. Chuhan Wang & Qigen Lin & Leibin Wang & Tong Jiang & Buda Su & Yanjun Wang & Sanjit Kumar Mondal & Jinlong Huang & Ying Wang, 2022. "The influences of the spatial extent selection for non-landslide samples on statistical-based landslide susceptibility modelling: a case study of Anhui Province in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1967-1988, July.
    10. Zhixue Sun & Baosheng Jiang & Xiangling Li & Jikang Li & Kang Xiao, 2020. "A Data-Driven Approach for Lithology Identification Based on Parameter-Optimized Ensemble Learning," Energies, MDPI, vol. 13(15), pages 1-15, July.
    11. Chen-Ying Hung & Ching-Heng Lin & Tsuo-Hung Lan & Giia-Sheun Peng & Chi-Chun Lee, 2019. "Development of an intelligent decision support system for ischemic stroke risk assessment in a population-based electronic health record database," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-16, March.
    12. Deborah Simon Mwakapesa & Yimin Mao & Xiaoji Lan & Yaser Ahangari Nanehkaran, 2023. "Landslide Susceptibility Mapping Using DIvisive ANAlysis (DIANA) and RObust Clustering Using linKs (ROCK) Algorithms, and Comparison of Their Performance," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    13. Paola Perchinunno & Massimo Bilancia & Domenico Vitale, 2021. "A Statistical Analysis of Factors Affecting Higher Education Dropouts," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 341-362, August.
    14. Hazem Ghassan Abdo & Hussein Almohamad & Ahmed Abdullah Al Dughairi & Motirh Al-Mutiry, 2022. "GIS-Based Frequency Ratio and Analytic Hierarchy Process for Forest Fire Susceptibility Mapping in the Western Region of Syria," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    15. Cui, Mianshan, 2022. "District heating load prediction algorithm based on bidirectional long short-term memory network model," Energy, Elsevier, vol. 254(PA).
    16. Golsefidi, Atefeh Hemmati & Hüttel, Frederik Boe & Peled, Inon & Samaranayake, Samitha & Pereira, Francisco Câmara, 2023. "A joint machine learning and optimization approach for incremental expansion of electric vehicle charging infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    17. Tingyu Zhang & Quan Fu & Chao Li & Fangfang Liu & Huanyuan Wang & Ling Han & Renata Pacheco Quevedo & Tianqing Chen & Na Lei, 2022. "Modeling landslide susceptibility using data mining techniques of kernel logistic regression, fuzzy unordered rule induction algorithm, SysFor and random forest," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3327-3358, December.
    18. Pantano, Eleonora & Pizzi, Gabriele, 2020. "Forecasting artificial intelligence on online customer assistance: Evidence from chatbot patents analysis," Journal of Retailing and Consumer Services, Elsevier, vol. 55(C).
    19. Ramadhan, Raden A.A. & Heatubun, Yosca R.J. & Tan, Sek F. & Lee, Hyun-Jin, 2021. "Comparison of physical and machine learning models for estimating solar irradiance and photovoltaic power," Renewable Energy, Elsevier, vol. 178(C), pages 1006-1019.
    20. Zhang, Ran & Ji, ChunHui & Zhou, Xing & Liu, Tianyu & Jin, Guang & Pan, Zhengqiang & Liu, Yajie, 2024. "Capacity estimation of lithium-ion batteries with uncertainty quantification based on temporal convolutional network and Gaussian process regression," Energy, Elsevier, vol. 297(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:119:y:2023:i:1:d:10.1007_s11069-023-06137-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.